Timezone: »
ICML’s Education Outreach Program hosts computer science undergraduate students from the University of Hawaii. A panel headed by the ICML General Chair and Program Chairs will begin with introductions and a Q & A session. Here, the esteemed panelists will introduce students to the field of machine learning, the current state of artificial intelligence, and future directions of this research. Through these conversations the panelists will provide information on educational pathways that will help the students achieve their career goals in computer science, machine learning, and AI.
Author Information
Andreas Krause (ETH Zurich)

Andreas Krause is a Professor of Computer Science at ETH Zurich, where he leads the Learning & Adaptive Systems Group. He also serves as Academic Co-Director of the Swiss Data Science Center and Chair of the ETH AI Center, and co-founded the ETH spin-off LatticeFlow. Before that he was an Assistant Professor of Computer Science at Caltech. He received his Ph.D. in Computer Science from Carnegie Mellon University (2008) and his Diplom in Computer Science and Mathematics from the Technical University of Munich, Germany (2004). He is a Max Planck Fellow at the Max Planck Institute for Intelligent Systems, an ELLIS Fellow, a Microsoft Research Faculty Fellow and a Kavli Frontiers Fellow of the US National Academy of Sciences. He received the Rössler Prize, ERC Starting Investigator and ERC Consolidator grants, the German Pattern Recognition Award, an NSF CAREER award as well as the ETH Golden Owl teaching award. His research has received awards at several premier conferences and journals, including the ACM SIGKDD Test of Time award 2019 and the ICML Test of Time award 2020. Andreas Krause served as Program Co-Chair for ICML 2018, and currently serves as General Chair for ICML 2023 and as Action Editor for the Journal of Machine Learning Research.
Barbara Engelhardt (Princeton University)
Emma Brunskill (Stanford University)

Emma Brunskill is an associate tenured professor in the Computer Science Department at Stanford University. Brunskill’s lab aims to create AI systems that learn from few samples to robustly make good decisions and is part of the Stanford AI Lab, the Stanford Statistical ML group, and AI Safety @Stanford. Brunskill has received a NSF CAREER award, Office of Naval Research Young Investigator Award, a Microsoft Faculty Fellow award and an alumni impact award from the computer science and engineering department at the University of Washington. Brunskill and her lab have received multiple best paper nominations and awards both for their AI and machine learning work (UAI best paper, Reinforcement Learning and Decision Making Symposium best paper twice) and for their work in Ai of education (Intelligent Tutoring Systems Conference, Educational Data Mining conference x3, CHI).
Kyunghyun Cho (New York University, Genentech)

Kyunghyun Cho is an associate professor of computer science and data science at New York University and CIFAR Fellow of Learning in Machines & Brains. He is also a senior director of frontier research at the Prescient Design team within Genentech Research & Early Development (gRED). He was a research scientist at Facebook AI Research from June 2017 to May 2020 and a postdoctoral fellow at University of Montreal until Summer 2015 under the supervision of Prof. Yoshua Bengio, after receiving MSc and PhD degrees from Aalto University April 2011 and April 2014, respectively, under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He received the Samsung Ho-Am Prize in Engineering in 2021. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.
More from the Same Authors
-
2021 : True Few-Shot Learning with Language Models »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 : Model-based Offline Reinforcement Learning with Local Misspecification »
Kefan Dong · Ramtin Keramati · Emma Brunskill -
2021 : Estimating Optimal Policy Value in Linear Contextual Bandits beyond Gaussianity »
Jonathan Lee · Weihao Kong · Aldo Pacchiano · Vidya Muthukumar · Emma Brunskill -
2021 : Avoiding Overfitting to the Importance Weights in Offline Policy Optimization »
Yao Liu · Emma Brunskill -
2021 : Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning »
Andrea Zanette · Martin Wainwright · Emma Brunskill -
2022 : Recovering Stochastic Dynamics via Gaussian Schrödinger Bridges »
Ya-Ping Hsieh · Charlotte Bunne · Marco Cuturi · Andreas Krause -
2022 : Giving Complex Feedback in Online Student Learning with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2022 : Linear Connectivity Reveals Generalization Strategies »
Jeevesh Juneja · Rachit Bansal · Kyunghyun Cho · João Sedoc · Naomi Saphra -
2022 : Recovering Stochastic Dynamics via Gaussian Schrödinger Bridges »
Charlotte Bunne · Ya-Ping Hsieh · Marco Cuturi · Andreas Krause -
2022 : Giving Feedback on Interactive Student Programs with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2023 : Experiment Planning with Function Approximation »
Aldo Pacchiano · Jonathan Lee · Emma Brunskill -
2023 : Anytime Model Selection in Linear Bandits »
Parnian Kassraie · Aldo Pacchiano · Nicolas Emmenegger · Andreas Krause -
2023 : Latent State Transitions in Training Dynamics »
Michael Hu · Angelica Chen · Naomi Saphra · Kyunghyun Cho -
2023 : Separating multimodal modeling from multidimensional modeling for multimodal learning »
Divyam Madaan · Taro Makino · Sumit Chopra · Kyunghyun Cho -
2023 : Antibody DomainBed: Towards robust predictions using invariant representations of biological sequences carrying complex distribution shifts »
Natasa Tagasovska · Ji Won Park · Stephen Ra · Kyunghyun Cho -
2023 : Unbalanced Diffusion Schrödinger Bridge »
Matteo Pariset · Ya-Ping Hsieh · Charlotte Bunne · Andreas Krause · Valentin De Bortoli -
2023 : Aligned Diffusion Schrödinger Bridges »
Vignesh Ram Somnath · Matteo Pariset · Ya-Ping Hsieh · Maria Rodriguez Martinez · Andreas Krause · Charlotte Bunne -
2023 : In-Context Decision-Making from Supervised Pretraining »
Jonathan Lee · Annie Xie · Aldo Pacchiano · Yash Chandak · Chelsea Finn · Ofir Nachum · Emma Brunskill -
2023 : Graph Neural Network Powered Bayesian Optimization for Large Molecular Spaces »
Miles Wang-Henderson · Bartu Soyuer · Parnian Kassraie · Andreas Krause · Ilija Bogunovic -
2023 : Concept Bottleneck Generative Models »
Aya Ismail · Julius Adebayo · Hector Corrada Bravo · Stephen Ra · Kyunghyun Cho -
2023 : Protein Design with Guided Discrete Diffusion »
Nate Gruver · Samuel Stanton · Nathan Frey · Tim G. J. Rudner · Isidro Hotzel · Julien Lafrance-Vanasse · Arvind Rajpal · Kyunghyun Cho · Andrew Wilson -
2023 : Experiment Planning with Function Approximation »
Aldo Pacchiano · Jonathan Lee · Emma Brunskill -
2023 : Anytime Model Selection in Linear Bandits »
Parnian Kassraie · Aldo Pacchiano · Nicolas Emmenegger · Andreas Krause -
2023 Poster: Towards Understanding and Improving GFlowNet Training »
Max Shen · Emmanuel Bengio · Ehsan Hajiramezanali · Andreas Loukas · Kyunghyun Cho · Tommaso Biancalani -
2022 : Giving Complex Feedback in Online Student Learning with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2022 Workshop: Adaptive Experimental Design and Active Learning in the Real World »
Mojmir Mutny · Willie Neiswanger · Ilija Bogunovic · Stefano Ermon · Yisong Yue · Andreas Krause -
2022 Poster: Learning to Cut by Looking Ahead: Cutting Plane Selection via Imitation Learning »
Max Paulus · Giulia Zarpellon · Andreas Krause · Laurent Charlin · Chris Maddison -
2022 Spotlight: Learning to Cut by Looking Ahead: Cutting Plane Selection via Imitation Learning »
Max Paulus · Giulia Zarpellon · Andreas Krause · Laurent Charlin · Chris Maddison -
2022 Poster: Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks »
Nan Wu · Stanislaw Jastrzebski · Kyunghyun Cho · Krzysztof J Geras -
2022 Poster: Interactively Learning Preference Constraints in Linear Bandits »
David Lindner · Sebastian Tschiatschek · Katja Hofmann · Andreas Krause -
2022 Spotlight: Interactively Learning Preference Constraints in Linear Bandits »
David Lindner · Sebastian Tschiatschek · Katja Hofmann · Andreas Krause -
2022 Spotlight: Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks »
Nan Wu · Stanislaw Jastrzebski · Kyunghyun Cho · Krzysztof J Geras -
2022 Poster: Adaptive Gaussian Process Change Point Detection »
Edoardo Caldarelli · Philippe Wenk · Stefan Bauer · Andreas Krause -
2022 Poster: Efficient Model-based Multi-agent Reinforcement Learning via Optimistic Equilibrium Computation »
Pier Giuseppe Sessa · Maryam Kamgarpour · Andreas Krause -
2022 Poster: Meta-Learning Hypothesis Spaces for Sequential Decision-making »
Parnian Kassraie · Jonas Rothfuss · Andreas Krause -
2022 Spotlight: Efficient Model-based Multi-agent Reinforcement Learning via Optimistic Equilibrium Computation »
Pier Giuseppe Sessa · Maryam Kamgarpour · Andreas Krause -
2022 Spotlight: Meta-Learning Hypothesis Spaces for Sequential Decision-making »
Parnian Kassraie · Jonas Rothfuss · Andreas Krause -
2022 Spotlight: Adaptive Gaussian Process Change Point Detection »
Edoardo Caldarelli · Philippe Wenk · Stefan Bauer · Andreas Krause -
2022 : Invited Talk: Emma Brunskill »
Emma Brunskill -
2021 : Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning »
Andrea Zanette · Martin Wainwright · Emma Brunskill -
2021 : Data Summarization via Bilevel Coresets »
Andreas Krause -
2021 Poster: PopSkipJump: Decision-Based Attack for Probabilistic Classifiers »
Carl-Johann Simon-Gabriel · Noman Ahmed Sheikh · Andreas Krause -
2021 Spotlight: PopSkipJump: Decision-Based Attack for Probabilistic Classifiers »
Carl-Johann Simon-Gabriel · Noman Ahmed Sheikh · Andreas Krause -
2021 Poster: PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees »
Jonas Rothfuss · Vincent Fortuin · Martin Josifoski · Andreas Krause -
2021 Poster: Rissanen Data Analysis: Examining Dataset Characteristics via Description Length »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 Spotlight: Rissanen Data Analysis: Examining Dataset Characteristics via Description Length »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 Spotlight: PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees »
Jonas Rothfuss · Vincent Fortuin · Martin Josifoski · Andreas Krause -
2021 Poster: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Poster: Online Submodular Resource Allocation with Applications to Rebalancing Shared Mobility Systems »
Pier Giuseppe Sessa · Ilija Bogunovic · Andreas Krause · Maryam Kamgarpour -
2021 Spotlight: Online Submodular Resource Allocation with Applications to Rebalancing Shared Mobility Systems »
Pier Giuseppe Sessa · Ilija Bogunovic · Andreas Krause · Maryam Kamgarpour -
2021 Spotlight: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Poster: No-regret Algorithms for Capturing Events in Poisson Point Processes »
Mojmir Mutny · Andreas Krause -
2021 Poster: Combining Pessimism with Optimism for Robust and Efficient Model-Based Deep Reinforcement Learning »
Sebastian Curi · Ilija Bogunovic · Andreas Krause -
2021 Spotlight: No-regret Algorithms for Capturing Events in Poisson Point Processes »
Mojmir Mutny · Andreas Krause -
2021 Spotlight: Combining Pessimism with Optimism for Robust and Efficient Model-Based Deep Reinforcement Learning »
Sebastian Curi · Ilija Bogunovic · Andreas Krause -
2021 Poster: Bias-Robust Bayesian Optimization via Dueling Bandits »
Johannes Kirschner · Andreas Krause -
2021 Poster: Fast Projection Onto Convex Smooth Constraints »
Ilnura Usmanova · Maryam Kamgarpour · Andreas Krause · Kfir Levy -
2021 Spotlight: Fast Projection Onto Convex Smooth Constraints »
Ilnura Usmanova · Maryam Kamgarpour · Andreas Krause · Kfir Levy -
2021 Spotlight: Bias-Robust Bayesian Optimization via Dueling Bandits »
Johannes Kirschner · Andreas Krause -
2020 : Constrained Maximization of Lattice Submodular Functions »
Aytunc Sahin · Joachim Buhmann · Andreas Krause -
2020 Workshop: Theoretical Foundations of Reinforcement Learning »
Emma Brunskill · Thodoris Lykouris · Max Simchowitz · Wen Sun · Mengdi Wang -
2020 Poster: From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models »
Aytunc Sahin · Yatao Bian · Joachim Buhmann · Andreas Krause -
2020 Poster: Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential Transitions »
Omer Gottesman · Joseph Futoma · Yao Liu · Sonali Parbhoo · Leo Celi · Emma Brunskill · Finale Doshi-Velez -
2020 Poster: Learning Near Optimal Policies with Low Inherent Bellman Error »
Andrea Zanette · Alessandro Lazaric · Mykel Kochenderfer · Emma Brunskill -
2020 Poster: Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling »
Yao Liu · Pierre-Luc Bacon · Emma Brunskill -
2020 Test Of Time: Test of Time: Gaussian Process Optimization in the Bandit Settings: No Regret and Experimental Design »
Niranjan Srinivas · Andreas Krause · Sham Kakade · Matthias Seeger -
2019 Workshop: Exploration in Reinforcement Learning Workshop »
Benjamin Eysenbach · Benjamin Eysenbach · Surya Bhupatiraju · Shixiang Gu · Harrison Edwards · Martha White · Pierre-Yves Oudeyer · Kenneth Stanley · Emma Brunskill -
2019 Workshop: Workshop on Multi-Task and Lifelong Reinforcement Learning »
Sarath Chandar · Shagun Sodhani · Khimya Khetarpal · Tom Zahavy · Daniel J. Mankowitz · Shie Mannor · Balaraman Ravindran · Doina Precup · Chelsea Finn · Abhishek Gupta · Amy Zhang · Kyunghyun Cho · Andrei A Rusu · Facebook Rob Fergus -
2019 : Emma Brunskill (Stanford) - Minimizing & Understanding the Data Needed to Learn to Make Good Sequences of Decisions »
Emma Brunskill -
2019 : panel discussion with Craig Boutilier (Google Research), Emma Brunskill (Stanford), Chelsea Finn (Google Brain, Stanford, UC Berkeley), Mohammad Ghavamzadeh (Facebook AI), John Langford (Microsoft Research) and David Silver (Deepmind) »
Peter Stone · Craig Boutilier · Emma Brunskill · Chelsea Finn · John Langford · David Silver · Mohammad Ghavamzadeh -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Online Variance Reduction with Mixtures »
Zalán Borsos · Sebastian Curi · Yehuda Levy · Andreas Krause -
2019 Poster: Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces »
Johannes Kirschner · Mojmir Mutny · Nicole Hiller · Rasmus Ischebeck · Andreas Krause -
2019 Poster: Non-Monotonic Sequential Text Generation »
Sean Welleck · Kiante Brantley · Hal Daumé III · Kyunghyun Cho -
2019 Oral: Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces »
Johannes Kirschner · Mojmir Mutny · Nicole Hiller · Rasmus Ischebeck · Andreas Krause -
2019 Oral: Non-Monotonic Sequential Text Generation »
Sean Welleck · Kiante Brantley · Hal Daumé III · Kyunghyun Cho -
2019 Oral: Online Variance Reduction with Mixtures »
Zalán Borsos · Sebastian Curi · Yehuda Levy · Andreas Krause -
2019 Poster: Learning Generative Models across Incomparable Spaces »
Charlotte Bunne · David Alvarez-Melis · Andreas Krause · Stefanie Jegelka -
2019 Poster: AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs »
Gabriele Abbati · Philippe Wenk · Michael A Osborne · Andreas Krause · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Combining parametric and nonparametric models for off-policy evaluation »
Omer Gottesman · Yao Liu · Scott Sussex · Emma Brunskill · Finale Doshi-Velez -
2019 Oral: Combining parametric and nonparametric models for off-policy evaluation »
Omer Gottesman · Yao Liu · Scott Sussex · Emma Brunskill · Finale Doshi-Velez -
2019 Oral: Learning Generative Models across Incomparable Spaces »
Charlotte Bunne · David Alvarez-Melis · Andreas Krause · Stefanie Jegelka -
2019 Oral: AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs »
Gabriele Abbati · Philippe Wenk · Michael A Osborne · Andreas Krause · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Policy Certificates: Towards Accountable Reinforcement Learning »
Christoph Dann · Lihong Li · Wei Wei · Emma Brunskill -
2019 Poster: Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference »
Yatao Bian · Joachim Buhmann · Andreas Krause -
2019 Poster: Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds »
Andrea Zanette · Emma Brunskill -
2019 Poster: Separable value functions across time-scales »
Joshua Romoff · Peter Henderson · Ahmed Touati · Yann Ollivier · Joelle Pineau · Emma Brunskill -
2019 Oral: Policy Certificates: Towards Accountable Reinforcement Learning »
Christoph Dann · Lihong Li · Wei Wei · Emma Brunskill -
2019 Oral: Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds »
Andrea Zanette · Emma Brunskill -
2019 Oral: Separable value functions across time-scales »
Joshua Romoff · Peter Henderson · Ahmed Touati · Yann Ollivier · Joelle Pineau · Emma Brunskill -
2019 Oral: Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference »
Yatao Bian · Joachim Buhmann · Andreas Krause -
2018 Poster: Decoupling Gradient-Like Learning Rules from Representations »
Philip Thomas · Christoph Dann · Emma Brunskill -
2018 Oral: Decoupling Gradient-Like Learning Rules from Representations »
Philip Thomas · Christoph Dann · Emma Brunskill -
2018 Poster: Problem Dependent Reinforcement Learning Bounds Which Can Identify Bandit Structure in MDPs »
Andrea Zanette · Emma Brunskill -
2018 Oral: Problem Dependent Reinforcement Learning Bounds Which Can Identify Bandit Structure in MDPs »
Andrea Zanette · Emma Brunskill -
2017 Poster: Guarantees for Greedy Maximization of Non-submodular Functions with Applications »
Yatao Bian · Joachim Buhmann · Andreas Krause · Sebastian Tschiatschek -
2017 Poster: Differentially Private Submodular Maximization: Data Summarization in Disguise »
Marko Mitrovic · Mark Bun · Andreas Krause · Amin Karbasi -
2017 Poster: Deletion-Robust Submodular Maximization: Data Summarization with "the Right to be Forgotten" »
Baharan Mirzasoleiman · Amin Karbasi · Andreas Krause -
2017 Poster: Probabilistic Submodular Maximization in Sub-Linear Time »
Serban A Stan · Morteza Zadimoghaddam · Andreas Krause · Amin Karbasi -
2017 Talk: Deletion-Robust Submodular Maximization: Data Summarization with "the Right to be Forgotten" »
Baharan Mirzasoleiman · Amin Karbasi · Andreas Krause -
2017 Talk: Probabilistic Submodular Maximization in Sub-Linear Time »
Serban A Stan · Morteza Zadimoghaddam · Andreas Krause · Amin Karbasi -
2017 Talk: Guarantees for Greedy Maximization of Non-submodular Functions with Applications »
Yatao Bian · Joachim Buhmann · Andreas Krause · Sebastian Tschiatschek -
2017 Talk: Differentially Private Submodular Maximization: Data Summarization in Disguise »
Marko Mitrovic · Mark Bun · Andreas Krause · Amin Karbasi -
2017 Poster: Distributed and Provably Good Seedings for k-Means in Constant Rounds »
Olivier Bachem · Mario Lucic · Andreas Krause -
2017 Poster: Uniform Deviation Bounds for k-Means Clustering »
Olivier Bachem · Mario Lucic · Hamed Hassani · Andreas Krause -
2017 Talk: Uniform Deviation Bounds for k-Means Clustering »
Olivier Bachem · Mario Lucic · Hamed Hassani · Andreas Krause -
2017 Talk: Distributed and Provably Good Seedings for k-Means in Constant Rounds »
Olivier Bachem · Mario Lucic · Andreas Krause