Timezone: »
Machine learning (ML) systems often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification in ML pipelines as a key reason for these failures. An ML pipeline is the full procedure followed to train and validate a predictor. Such a pipeline is underspecified when it can return many distinct predictors with equivalently strong test performance. Underspecification is common in modern ML pipelines that primarily validate predictors on held-out data that follow the same distribution as the training data. Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains. This ambiguity can lead to instability and poor model behavior in practice, and is a distinct failure mode from previously identified issues arising from structural mismatch between training and deployment domains. We provide evidence that underspecfication has substantive implications for practical ML pipelines, using examples from computer vision, medical imaging, natural language processing, clinical risk prediction based on electronic health records, and medical genomics. Our results show the need to explicitly account for underspecification in modeling pipelines that are intended for real-world deployment in any domain.
Author Information
Alexander D'Amour (Google DeepMind)
Katherine Heller (Google)
Dan Moldovan
Ben Adlam (Google Brain)
Babak Alipanahi
Alex Beutel (OpenAI)
Christina Chen
Jonathan Deaton
Jacob Eisenstein (Google AI)
Matthew Hoffman (Google)
Farhad Hormozdiari
Neil Houlsby (Google)
Shaobo Hou
Ghassen Jerfel (Waymo Research)
Alan Karthikesalingam (Google Health)
Mario Lucic (Google Brain)
Yian Ma (UCSD)
Cory McLean (Google LLC)
Diana Mincu
Akinori Mitani (Google)
Andrea Montanari (Stanford University)
Zachary Nado (Google Research, Brain Team)
Vivek Natarajan
Christopher Nielson
Thomas F. Osborne (VA Palo Alto Healthcare System)
Thomas Osborne, MD, is the Director of VA’s National Center for Collaborative Healthcare Innovation (NCCHI) and Executive Director of VA Convergence Center (VC2). He is leading the development, assessment, and deployment of pioneering healthcare solutions throughout VA, with other government agencies, and with industry. His teams mission is to deliver the best and most advanced healthcare solutions to our Veterans. Dr. Osborne is the inaugural recipient of the VA Under Secretary for Health Robert L. Jesse Award for Excellence in Innovation, the Arthur S. Flemming Award for exceptional public service, as well as multiple other national awards. His work has been published in numerous medical journals and textbooks on topics such as health equity, predictive analytics, artificial intelligence, sensor technology, augmented reality, virtual reality, and the future of health care. Dr. Osborne received his medical degree from Dartmouth Medical School before completing residency and fellowship at Harvard hospitals.
Rajiv Raman
Kim Ramasamy
Rory sayres (Google)
Jessica Schrouff (Google Health)
Martin Seneviratne (Google Health)
Shannon Sequeira (Google)
Harini Suresh
Victor Veitch
Maksym Vladymyrov (Google)
Xuezhi Wang (Google Deepmind)
Kellie Webster (Google)
Steve Yadlowsky (Google Brain)
Taedong Yun (Google Research)
Xiaohua Zhai (Google Brain)
D. Sculley (Google)
More from the Same Authors
-
2022 : Fairness and robustness in anti-causal prediction »
Maggie Makar · Alexander D'Amour -
2022 : SI-Score »
Jessica Yung · Rob Romijnders · Alexander Kolesnikov · Lucas Beyer · Josip Djolonga · Neil Houlsby · Sylvain Gelly · Mario Lucic · Xiaohua Zhai -
2022 : Fairness and robustness in anti-causal prediction »
Maggie Makar · Alexander D'Amour -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Diagnosing Model Performance Under Distribution Shift »
Tianhui Cai · Hongseok Namkoong · Steve Yadlowsky -
2022 : Adapting to Shifts in Latent Confounders via Observed Concepts and Proxies »
Matt Kusner · Ibrahim Alabdulmohsin · Stephen Pfohl · Olawale Salaudeen · Arthur Gretton · Sanmi Koyejo · Jessica Schrouff · Alexander D'Amour -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2023 : Participatory Personalization in Classification »
Hailey Joren · Chirag Nagpal · Katherine Heller · Berk Ustun -
2023 : Let’s Do a Thought Experiment: Using Counterfactuals to Improve Moral Reasoning »
Xiao Ma · Swaroop Mishra · Ahmad Beirami · Alex Beutel · Jilin Chen -
2023 : Participatory Personalization in Classification »
Hailey Joren · Chirag Nagpal · Katherine Heller · Berk Ustun -
2023 : Participatory Personalization in Classification »
Hailey Joren · Chirag Nagpal · Katherine Heller · Berk Ustun -
2023 : Three Towers: Flexible Contrastive Learning with Pretrained Image Models »
Jannik Kossen · Mark Collier · Basil Mustafa · Xiao Wang · Xiaohua Zhai · Lucas Beyer · Andreas Steiner · Jesse Berent · Rodolphe Jenatton · Efi Kokiopoulou -
2023 : Multimodal LLMs for health grounded in individual-specific data »
Justin Cosentino · Anastasiya Belyaeva · Farhad Hormozdiari · Cory McLean · nicholas furlotte -
2023 : Solving overparametrized systems of random equations, Andrea Montanari »
Andrea Montanari -
2023 Poster: Compressing Tabular Data via Latent Variable Estimation »
Andrea Montanari · Eric Weiner -
2023 Poster: Tuning Computer Vision Models With Task Rewards »
André Susano Pinto · Alexander Kolesnikov · Yuge Shi · Lucas Beyer · Xiaohua Zhai -
2023 Poster: Adaptive Computation with Elastic Input Sequence »
Fuzhao Xue · Valerii Likhosherstov · Anurag Arnab · Neil Houlsby · Mostafa Dehghani · Yang You -
2023 Poster: Scaling Vision Transformers to 22 Billion Parameters »
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby -
2023 Poster: When does Privileged information Explain Away Label Noise? »
Guillermo Ortiz Jimenez · Mark Collier · Anant Nawalgaria · Alexander D'Amour · Jesse Berent · Rodolphe Jenatton · Efi Kokiopoulou -
2023 Oral: Scaling Vision Transformers to 22 Billion Parameters »
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : SI-Score »
Jessica Yung · Rob Romijnders · Alexander Kolesnikov · Lucas Beyer · Josip Djolonga · Neil Houlsby · Sylvain Gelly · Mario Lucic · Xiaohua Zhai -
2022 : Dynamic neural networks: Present and Future »
Neil Houlsby -
2022 Poster: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts »
Nan Du · Yanping Huang · Andrew Dai · Simon Tong · Dmitry Lepikhin · Yuanzhong Xu · Maxim Krikun · Yanqi Zhou · Adams Wei Yu · Orhan Firat · Barret Zoph · William Fedus · Maarten Bosma · Zongwei Zhou · Tao Wang · Emma Wang · Kellie Webster · Marie Pellat · Kevin Robinson · Kathleen Meier-Hellstern · Toju Duke · Lucas Dixon · Kun Zhang · Quoc Le · Yonghui Wu · Zhifeng Chen · Claire Cui -
2022 Spotlight: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts »
Nan Du · Yanping Huang · Andrew Dai · Simon Tong · Dmitry Lepikhin · Yuanzhong Xu · Maxim Krikun · Yanqi Zhou · Adams Wei Yu · Orhan Firat · Barret Zoph · William Fedus · Maarten Bosma · Zongwei Zhou · Tao Wang · Emma Wang · Kellie Webster · Marie Pellat · Kevin Robinson · Kathleen Meier-Hellstern · Toju Duke · Lucas Dixon · Kun Zhang · Quoc Le · Yonghui Wu · Zhifeng Chen · Claire Cui -
2022 Poster: HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning »
Andrey Zhmoginov · Mark Sandler · Maksym Vladymyrov -
2022 Spotlight: HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning »
Andrey Zhmoginov · Mark Sandler · Maksym Vladymyrov -
2021 Workshop: Time Series Workshop »
Yian Ma · Ehi Nosakhare · Yuyang Wang · Scott Yang · Rose Yu -
2021 Workshop: The Neglected Assumptions In Causal Inference »
Niki Kilbertus · Lily Hu · Laura Balzer · Uri Shalit · Alexander D'Amour · Razieh Nabi -
2021 Workshop: Interpretable Machine Learning in Healthcare »
Yuyin Zhou · Xiaoxiao Li · Vicky Yao · Pengtao Xie · DOU QI · Nicha Dvornek · Julia Schnabel · Judy Wawira · Yifan Peng · Ronald Summers · Alan Karthikesalingam · Lei Xing · Eric Xing -
2021 Poster: What Are Bayesian Neural Network Posteriors Really Like? »
Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson -
2021 Oral: What Are Bayesian Neural Network Posteriors Really Like? »
Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson -
2020 Poster: Black-Box Variational Inference as a Parametric Approximation to Langevin Dynamics »
Matthew Hoffman · Yian Ma -
2020 Poster: Automatic Reparameterisation of Probabilistic Programs »
Maria Gorinova · Dave Moore · Matthew Hoffman -
2020 Poster: Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors »
Mike Dusenberry · Ghassen Jerfel · Yeming Wen · Yian Ma · Jasper Snoek · Katherine Heller · Balaji Lakshminarayanan · Dustin Tran -
2020 Poster: The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization »
Ben Adlam · Jeffrey Pennington -
2020 Poster: Population-Based Black-Box Optimization for Biological Sequence Design »
Christof Angermueller · David Belanger · Andreea Gane · Zelda Mariet · David Dohan · Kevin Murphy · Lucy Colwell · D. Sculley -
2020 Poster: Automatic Shortcut Removal for Self-Supervised Representation Learning »
Matthias Minderer · Olivier Bachem · Neil Houlsby · Michael Tschannen -
2019 : Networking Lunch (provided) + Poster Session »
Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Direct Uncertainty Prediction for Medical Second Opinions »
Maithra Raghu · Katy Blumer · Rory sayres · Ziad Obermeyer · Bobby Kleinberg · Sendhil Mullainathan · Jon Kleinberg -
2019 Poster: A Large-Scale Study on Regularization and Normalization in GANs »
Karol Kurach · Mario Lucic · Xiaohua Zhai · Marcin Michalski · Sylvain Gelly -
2019 Oral: A Large-Scale Study on Regularization and Normalization in GANs »
Karol Kurach · Mario Lucic · Xiaohua Zhai · Marcin Michalski · Sylvain Gelly -
2019 Oral: Direct Uncertainty Prediction for Medical Second Opinions »
Maithra Raghu · Katy Blumer · Rory sayres · Ziad Obermeyer · Bobby Kleinberg · Sendhil Mullainathan · Jon Kleinberg -
2019 Poster: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2019 Poster: High-Fidelity Image Generation With Fewer Labels »
Mario Lucic · Michael Tschannen · Marvin Ritter · Xiaohua Zhai · Olivier Bachem · Sylvain Gelly -
2019 Oral: High-Fidelity Image Generation With Fewer Labels »
Mario Lucic · Michael Tschannen · Marvin Ritter · Xiaohua Zhai · Olivier Bachem · Sylvain Gelly -
2019 Oral: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2018 Poster: Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) »
Been Kim · Martin Wattenberg · Justin Gilmer · Carrie Cai · James Wexler · Fernanda Viégas · Rory sayres -
2018 Oral: Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) »
Been Kim · Martin Wattenberg · Justin Gilmer · Carrie Cai · James Wexler · Fernanda Viégas · Rory sayres -
2017 Poster: Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo »
Matthew Hoffman -
2017 Talk: Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo »
Matthew Hoffman