Timezone: »
In this paper, we provide a general framework for studying multi-agent online learning problems in the presence of delays and asynchronicities. Specifically, we propose and analyze a class of adaptive dual averaging schemes in which agents only need to accumulate gradient feedback received from the whole system, without requiring any between-agent coordination. In the single-agent case, the adaptivity of the proposed method allows us to extend a range of existing results to problems with potentially unbounded delays between playing an action and receiving the corresponding feedback. In the multi-agent case, the situation is significantly more complicated because agents may not have access to a global clock to use as a reference point; to overcome this, we focus on the information that is available for producing each prediction rather than the actual delay associated with each feedback. This allows us to derive adaptive learning strategies with optimal regret bounds, even in a fully decentralized, asynchronous environment. Finally, we also analyze an “optimistic” variant of the proposed algorithm which is capable of exploiting the predictability of problems with a slower variation and leads to improved regret bounds.
Author Information
Yu-Guan Hsieh (University of Grenoble-Alpes)
Franck Iutzeler (Univ. Grenoble Alpes)
Jérôme Malick (CNRS)
Panayotis Mertikopoulos (CNRS and Criteo AI Lab)
More from the Same Authors
-
2023 Poster: Thompson Sampling with Diffusion Generative Prior »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton · Patrick Bloebaum -
2022 Poster: Nested Bandits »
Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier · Houssam Zenati -
2022 Poster: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Oral: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Spotlight: Nested Bandits »
Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier · Houssam Zenati -
2022 Poster: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2022 Spotlight: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2021 Poster: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Spotlight: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Oral: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Zeroth-Order Non-Convex Learning via Hierarchical Dual Averaging »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier -
2021 Spotlight: Zeroth-Order Non-Convex Learning via Hierarchical Dual Averaging »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier -
2020 Poster: Gradient-free Online Learning in Continuous Games with Delayed Rewards »
Amélie Héliou · Panayotis Mertikopoulos · Zhengyuan Zhou -
2020 Poster: A new regret analysis for Adam-type algorithms »
Ahmet Alacaoglu · Yura Malitsky · Panayotis Mertikopoulos · Volkan Cevher -
2020 Poster: Finite-Time Last-Iterate Convergence for Multi-Agent Learning in Games »
Tianyi Lin · Zhengyuan Zhou · Panayotis Mertikopoulos · Michael Jordan -
2019 Poster: Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints »
Nikolaos Liakopoulos · Apostolos Destounis · Georgios Paschos · Thrasyvoulos Spyropoulos · Panayotis Mertikopoulos -
2019 Oral: Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints »
Nikolaos Liakopoulos · Apostolos Destounis · Georgios Paschos · Thrasyvoulos Spyropoulos · Panayotis Mertikopoulos -
2018 Poster: A Delay-tolerant Proximal-Gradient Algorithm for Distributed Learning »
Konstantin Mishchenko · Franck Iutzeler · Jérôme Malick · Massih-Reza Amini -
2018 Poster: Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go? »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter Glynn · Yinyu Ye · Li-Jia Li · Li Fei-Fei -
2018 Oral: A Delay-tolerant Proximal-Gradient Algorithm for Distributed Learning »
Konstantin Mishchenko · Franck Iutzeler · Jérôme Malick · Massih-Reza Amini -
2018 Oral: Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go? »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter Glynn · Yinyu Ye · Li-Jia Li · Li Fei-Fei