Timezone: »
Bayesian Neural Networks with Latent Variables (BNN+LVs) capture predictive uncertainty by explicitly modeling model uncertainty (via priors on network weights) and environmental stochasticity (via a latent input noise variable). In this work, we first show that BNN+LV suffers from a serious form of non-identifiability: explanatory power can be transferred between the model parameters and latent variables while fitting the data equally well. We demonstrate that as a result, in the limit of infinite data, the posterior mode over the network weights and latent variables is asymptotically biased away from the ground-truth. Due to this asymptotic bias, traditional inference methods may in practice yield parameters that generalize poorly and misestimate uncertainty. Next, we develop a novel inference procedure that explicitly mitigates the effects of likelihood non-identifiability during training and yields high-quality predictions as well as uncertainty estimates. We demonstrate that our inference method improves upon benchmark methods across a range of synthetic and real data-sets.
Author Information
Yaniv Yacoby (Harvard University)
Weiwei Pan (Harvard University)
Finale Doshi-Velez (Harvard University)

Finale Doshi-Velez is a Gordon McKay Professor in Computer Science at the Harvard Paulson School of Engineering and Applied Sciences. She completed her MSc from the University of Cambridge as a Marshall Scholar, her PhD from MIT, and her postdoc at Harvard Medical School. Her interests lie at the intersection of machine learning, healthcare, and interpretability. Selected Additional Shinies: BECA recipient, AFOSR YIP and NSF CAREER recipient; Sloan Fellow; IEEE AI Top 10 to Watch
More from the Same Authors
-
2021 : Promises and Pitfalls of Black-Box Concept Learning Models »
· Anita Mahinpei · Justin Clark · Isaac Lage · Finale Doshi-Velez · Weiwei Pan -
2021 : Prediction-focused Mixture Models »
Abhishek Sharma · Sanjana Narayanan · Catherine Zeng · Finale Doshi-Velez -
2021 : Online structural kernel selection for mobile health »
Eura Shin · Predag Klasnja · Susan Murphy · Finale Doshi-Velez -
2021 : Interpretable learning-to-defer for sequential decision-making »
Shalmali Joshi · Sonali Parbhoo · Finale Doshi-Velez -
2021 : Interpretable learning-to-defer for sequential decision-making »
Shalmali Joshi · Sonali Parbhoo · Finale Doshi-Velez -
2021 : On formalizing causal off-policy sequential decision-making »
Sonali Parbhoo · Shalmali Joshi · Finale Doshi-Velez -
2022 : Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare »
Shengpu Tang · Maggie Makar · Michael Sjoding · Finale Doshi-Velez · Jenna Wiens -
2022 : From Soft Trees to Hard Trees: Gains and Losses »
Xin Zeng · Jiayu Yao · Finale Doshi-Velez · Weiwei Pan -
2022 : Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry »
Mark Penrod · Harrison Termotto · Varshini Reddy · Jiayu Yao · Finale Doshi-Velez · Weiwei Pan -
2023 : Why do universal adversarial attacks work on large language models?: Geometry might be the answer »
Varshini Subhash · Anna Bialas · Siddharth Swaroop · Weiwei Pan · Finale Doshi-Velez -
2023 : Implications of Gaussian process kernel mismatch for out-of-distribution data »
Beau Coker · Finale Doshi-Velez -
2023 : Inverse Transition Learning for Characterizing Near-Optimal Dynamics in Offline Reinforcement Learning »
Leo Benac · Sonali Parbhoo · Finale Doshi-Velez -
2023 : Discovering User Types: Characterization of User Traits by Task-Specific Behaviors in Reinforcement Learning »
Lars L. Ankile · Brian Ham · Kevin Mao · Eura Shin · Siddharth Swaroop · Finale Doshi-Velez · Weiwei Pan -
2023 : Adaptive interventions for both accuracy and time in AI-assisted human decision making »
Siddharth Swaroop · Zana Buçinca · Krzysztof Gajos · Finale Doshi-Velez -
2023 : SAP-sLDA: An Interpretable Interface for Exploring Unstructured Text »
Charumathi Badrinath · Weiwei Pan · Finale Doshi-Velez -
2023 : Signature Activation: A Sparse Signal View for Holistic Saliency »
Jose Tello Ayala · Akl Fahed · Weiwei Pan · Eugene Pomerantsev · Patrick Ellinor · Anthony Philippakis · Finale Doshi-Velez -
2023 : Signature Activation: A Sparse Signal View for Holistic Saliency »
Jose Tello Ayala · Akl Fahed · Weiwei Pan · Eugene Pomerantsev · Patrick Ellinor · Anthony Philippakis · Finale Doshi-Velez -
2023 : Implications of kernel mismatch for OOD data »
Beau Coker · Finale Doshi-Velez -
2023 : Soft prompting might be a bug, not a feature »
Luke Bailey · Gustaf Ahdritz · Anat Kleiman · Siddharth Swaroop · Finale Doshi-Velez · Weiwei Pan -
2023 : Bayesian Inverse Transition Learning for Offline Settings »
Leo Benac · Sonali Parbhoo · Finale Doshi-Velez -
2023 : Discovering User Types: Characterization of User Traits by Task-Specific Behaviors in Reinforcement Learning »
Lars L. Ankile · Brian Ham · Kevin Mao · Eura Shin · Siddharth Swaroop · Finale Doshi-Velez · Weiwei Pan -
2023 : Discovering User Types: Characterization of User Traits by Task-Specific Behaviors in Reinforcement Learning »
Lars L. Ankile · Brian Ham · Kevin Mao · Eura Shin · Siddharth Swaroop · Finale Doshi-Velez · Weiwei Pan -
2023 Poster: The Unintended Consequences of Discount Regularization: Improving Regularization in Certainty Equivalence Reinforcement Learning »
Sarah Rathnam · Sonali Parbhoo · Weiwei Pan · Susan Murphy · Finale Doshi-Velez -
2022 : Responsible Decision-Making in Batch RL Settings »
Finale Doshi-Velez -
2021 : RL Explainability & Interpretability Panel »
Ofra Amir · Finale Doshi-Velez · Alan Fern · Zachary Lipton · Omer Gottesman · Niranjani Prasad -
2021 : [01:50 - 02:35 PM UTC] Invited Talk 3: Interpretability in High Dimensions: Concept Bottlenecks and Beyond »
Finale Doshi-Velez -
2021 Poster: Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement »
Andrew Ross · Finale Doshi-Velez -
2021 Oral: Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement »
Andrew Ross · Finale Doshi-Velez -
2021 Poster: State Relevance for Off-Policy Evaluation »
Simon Shen · Yecheng Jason Ma · Omer Gottesman · Finale Doshi-Velez -
2021 Spotlight: State Relevance for Off-Policy Evaluation »
Simon Shen · Yecheng Jason Ma · Omer Gottesman · Finale Doshi-Velez -
2020 : Keynote #2 Finale Doshi-Velez »
Finale Doshi-Velez -
2020 Poster: Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential Transitions »
Omer Gottesman · Joseph Futoma · Yao Liu · Sonali Parbhoo · Leo Celi · Emma Brunskill · Finale Doshi-Velez -
2019 : Spotlight »
Tyler Scott · Kiran Thekumparampil · Jonathan Aigrain · Rene Bidart · Priyadarshini Panda · Dian Ang Yap · Yaniv Yacoby · Raphael Gontijo Lopes · Alberto Marchisio · Erik Englesson · Wanqian Yang · Moritz Graule · Yi Sun · Daniel Kang · Mike Dusenberry · Min Du · Hartmut Maennel · Kunal Menda · Vineet Edupuganti · Luke Metz · David Stutz · Vignesh Srinivasan · Timo Sämann · Vineeth N Balasubramanian · Sina Mohseni · Rob Cornish · Judith Butepage · Zhangyang Wang · Bai Li · Bo Han · Honglin Li · Maksym Andriushchenko · Lukas Ruff · Meet P. Vadera · Yaniv Ovadia · Sunil Thulasidasan · Disi Ji · Gang Niu · Saeed Mahloujifar · Aviral Kumar · SANGHYUK CHUN · Dong Yin · Joyce Xu Xu · Hugo Gomes · Raanan Rohekar -
2019 Poster: Combining parametric and nonparametric models for off-policy evaluation »
Omer Gottesman · Yao Liu · Scott Sussex · Emma Brunskill · Finale Doshi-Velez -
2019 Oral: Combining parametric and nonparametric models for off-policy evaluation »
Omer Gottesman · Yao Liu · Scott Sussex · Emma Brunskill · Finale Doshi-Velez -
2018 Poster: Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning »
Stefan Depeweg · Jose Miguel Hernandez-Lobato · Finale Doshi-Velez · Steffen Udluft -
2018 Poster: Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors »
Soumya Ghosh · Jiayu Yao · Finale Doshi-Velez -
2018 Oral: Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors »
Soumya Ghosh · Jiayu Yao · Finale Doshi-Velez -
2018 Oral: Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning »
Stefan Depeweg · Jose Miguel Hernandez-Lobato · Finale Doshi-Velez · Steffen Udluft -
2017 Tutorial: Interpretable Machine Learning »
Been Kim · Finale Doshi-Velez