Timezone: »
Additive models have been burgeoning in data analysis due to their flexible representation and desirable interpretability. However, most existing approaches are constructed under empirical risk minimization (ERM), and thus perform poorly in situations where average performance is not a suitable criterion for the problems of interest, e.g., data with complex non-Gaussian noise, imbalanced labels or both of them. In this paper, a novel class of sparse additive models is proposed under tilted empirical risk minimization (TERM), which addresses the deficiencies in ERM by imposing tilted impact on individual losses, and is flexibly capable of achieving a variety of learning objectives, e.g., variable selection, robust estimation, imbalanced classification and multiobjective learning. On the theoretical side, a learning theory analysis which is centered around the generalization bound and function approximation error bound (under some specific data distributions) is conducted rigorously. On the practical side, an accelerated optimization algorithm is designed by integrating Prox-SVRG and random Fourier acceleration technique. The empirical assessments verify the competitive performance of our approach on both synthetic and real data.
Author Information
Yingjie Wang (China University of Petroleum)
Hong Chen (Huazhong Agricultural University)
Weifeng Liu (China University of Petroleum (East China))
Fengxiang He (University of Edinburgh)
Fengxiang He is a Lecturer at Artificial Intelligence and its Applications Institute, School of Informatics, University of Edinburgh. He received his BSc in statistics from University of Science and Technology of China, MPhil and PhD in computer science from University of Sydney. He was an Algorithm Scientist at JD Explore Academy, JD.com, Inc., leading its trustworthy AI team. His research interest is in the theory and practice of trustworthy AI, including deep learning theory, privacy-preserving machine learning, algorithmic game theory, etc., as well as applications in finance and economics. He is an Area Chair of UAI, AISTATS, and ACML.
Tieliang Gong (Xi'an Jiaotong University)
YouCheng Fu (HuaZhong Agriculture University)
Dacheng Tao
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Poster: Tilted Sparse Additive Models »
Thu. Jul 27th 12:00 -- 01:30 AM Room Exhibit Hall 1 #423
More from the Same Authors
-
2023 : Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning »
Guozheng Ma · · Haoyu Wang · Lu Li · Zilin Wang · Zhen Wang · Li Shen · Xueqian Wang · Dacheng Tao -
2023 Oral: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Poster: Structured Cooperative Learning with Graphical Model Priors »
Shuangtong Li · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2023 Poster: Decentralized SGD and Average-direction SAM are Asymptotically Equivalent »
Tongtian Zhu · Fengxiang He · Kaixuan Chen · Mingli Song · Dacheng Tao -
2023 Poster: Improving the Model Consistency of Decentralized Federated Learning »
Yifan Shi · Li Shen · Kang Wei · Yan Sun · Bo Yuan · Xueqian Wang · Dacheng Tao -
2023 Poster: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Poster: Detecting Out-of-distribution Data through In-distribution Class Prior »
Xue JIANG · Feng Liu · zhen fang · Hong Chen · Tongliang Liu · Feng Zheng · Bo Han -
2023 Poster: Learning to Learn from APIs: Black-Box Data-Free Meta-Learning »
Zixuan Hu · Li Shen · Zhenyi Wang · Baoyuan Wu · Chun Yuan · Dacheng Tao -
2022 Poster: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2022 Spotlight: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2022 Poster: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Spotlight: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Poster: Topology-aware Generalization of Decentralized SGD »
Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao -
2022 Spotlight: Topology-aware Generalization of Decentralized SGD »
Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao -
2020 Poster: Sparse Shrunk Additive Models »
guodong liu · Hong Chen · Heng Huang -
2017 Poster: Beyond Filters: Compact Feature Map for Portable Deep Model »
Yunhe Wang · Chang Xu · Chao Xu · Dacheng Tao -
2017 Talk: Beyond Filters: Compact Feature Map for Portable Deep Model »
Yunhe Wang · Chang Xu · Chao Xu · Dacheng Tao -
2017 Poster: Algorithmic Stability and Hypothesis Complexity »
Tongliang Liu · Gábor Lugosi · Gergely Neu · Dacheng Tao -
2017 Talk: Algorithmic Stability and Hypothesis Complexity »
Tongliang Liu · Gábor Lugosi · Gergely Neu · Dacheng Tao