Timezone: »

Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re

Thu Jul 27 06:48 PM -- 06:56 PM (PDT) @ Meeting Room 313

Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the core building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers at scale, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In challenging reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-space models, transfer functions, and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets WikiText103 and The Pile, reaching Transformer quality with a 20% reduction in training compute required at sequence length 2k. Hyena operators are 2x faster than highly optimized attention at sequence length 8k, with speedups of 100x at 64k.

Author Information

Michael Poli (Stanford University)
Stefano Massaroli (Mila)
Eric Nguyen (Stanford)

PhD student at Stanford in bioengineering and machine learning.

Daniel Y Fu (Stanford University)
Tri Dao (Stanford)
Stephen Baccus (Stanford University)
Yoshua Bengio (Mila - Quebec AI Institute)
Stefano Ermon (Stanford University)
Christopher Re (Stanford University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors