Timezone: »
Interpretable time series prediction is crucial for safety-critical areas such as healthcare and autonomous driving. Most existing methods focus on interpreting predictions by assigning important scores to segments of time series. In this paper, we take a different and more challenging route and aim at developing a self-interpretable model, dubbed Counterfactual Time Series (CounTS), which generates counterfactual and actionable explanations for time series predictions. Specifically, we formalize the problem of time series counterfactual explanations, establish associated evaluation protocols, and propose a variational Bayesian deep learning model equipped with counterfactual inference capability of time series abduction, action, and prediction. Compared with state-of-the-art baselines, our self-interpretable model can generate better counterfactual explanations while maintaining comparable prediction accuracy.
Author Information
Jingquan Yan (Rutgers University)
Hao Wang (Rutgers University)
Dr. Hao Wang is currently an assistant professor in the department of computer science at Rutgers University. Previously he was a Postdoctoral Associate at the Computer Science & Artificial Intelligence Lab (CSAIL) of MIT, working with Dina Katabi and Tommi Jaakkola. He received his PhD degree from the Hong Kong University of Science and Technology, as the sole recipient of the School of Engineering PhD Research Excellence Award in 2017. He has been a visiting researcher in the Machine Learning Department of Carnegie Mellon University. His research focuses on statistical machine learning, deep learning, and data mining, with broad applications on recommender systems, healthcare, user profiling, social network analysis, text mining, etc. His work on Bayesian deep learning for recommender systems and personalized modeling has inspired hundreds of follow-up works published at top conferences such as AAAI, ICML, IJCAI, KDD, NIPS, SIGIR, and WWW. It has received over 1000 citations, becoming the most cited paper at KDD 2015. In 2015, he was awarded the Microsoft Fellowship in Asia and the Baidu Research Fellowship for his innovation on Bayesian deep learning and its applications on data mining and social network analysis.
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Poster: Self-Interpretable Time Series Prediction with Counterfactual Explanations »
Tue. Jul 25th 09:00 -- 11:30 PM Room Exhibit Hall 1 #320
More from the Same Authors
-
2023 : Towards Effective Data Poisoning for Imbalanced Classification »
Snigdha Sushil Mishra · Hao He · Hao Wang -
2023 Poster: Taxonomy-Structured Domain Adaptation »
Tianyi Liu · Zihao Xu · Hao He · Guangyuan Hao · Guang-He Lee · Hao Wang -
2023 Poster: Robust Perception through Equivariance »
Chengzhi Mao · Lingyu Zhang · Abhishek Joshi · Junfeng Yang · Hao Wang · Carl Vondrick -
2022 Poster: Domain Adaptation for Time Series Forecasting via Attention Sharing »
Xiaoyong Jin · Youngsuk Park · Danielle Robinson · Hao Wang · Yuyang Wang -
2022 Spotlight: Domain Adaptation for Time Series Forecasting via Attention Sharing »
Xiaoyong Jin · Youngsuk Park · Danielle Robinson · Hao Wang · Yuyang Wang -
2021 Poster: STRODE: Stochastic Boundary Ordinary Differential Equation »
Huang Hengguan · Hongfu Liu · Hao Wang · Chang Xiao · Ye Wang -
2021 Poster: Correcting Exposure Bias for Link Recommendation »
Shantanu Gupta · Hao Wang · Zachary Lipton · Yuyang Wang -
2021 Spotlight: Correcting Exposure Bias for Link Recommendation »
Shantanu Gupta · Hao Wang · Zachary Lipton · Yuyang Wang -
2021 Spotlight: STRODE: Stochastic Boundary Ordinary Differential Equation »
Huang Hengguan · Hongfu Liu · Hao Wang · Chang Xiao · Ye Wang -
2021 Poster: Delving into Deep Imbalanced Regression »
Yuzhe Yang · Kaiwen Zha · YINGCONG CHEN · Hao Wang · Dina Katabi -
2021 Oral: Delving into Deep Imbalanced Regression »
Yuzhe Yang · Kaiwen Zha · YINGCONG CHEN · Hao Wang · Dina Katabi -
2020 Poster: Deep Graph Random Process for Relational-Thinking-Based Speech Recognition »
Huang Hengguan · Fuzhao Xue · Hao Wang · Ye Wang