Timezone: »
Oral
Tractable Control for Autoregressive Language Generation
Honghua Zhang · Meihua Dang · Nanyun Peng · Guy Van den Broeck
Wed Jul 26 07:56 PM -- 08:04 PM (PDT) @ Meeting Room 313
Despite the success of autoregressive large language models in text generation, it remains a major challenge to generate text that satisfies complex constraints: sampling from the conditional distribution ${\Pr}(\text{text} | \alpha)$ is intractable for even the simplest lexical constraints $\alpha$. To overcome this challenge, we propose to use tractable probabilistic models (TPMs) to impose lexical constraints in autoregressive text generation models, which we refer to as GeLaTo (Generating Language with Tractable Constraints). To demonstrate the effectiveness of this framework, we use distilled hidden Markov models, where we can efficiently compute ${\Pr}(\text{text} | \alpha)$, to guide autoregressive generation from GPT2. GeLaTo achieves state-of-the-art performance on challenging benchmarks for constrained text generation (e.g., CommonGen), beating various strong baselines by a large margin. Our work not only opens up new avenues for controlling large language models but also motivates the development of more expressive TPMs.
Author Information
Honghua Zhang (University of California, Los Angeles)
Meihua Dang (University of California, Los Angeles)
Nanyun Peng (UCLA)
Guy Van den Broeck (University of California, Los Angeles)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Poster: Tractable Control for Autoregressive Language Generation »
Wed. Jul 26th 12:00 -- 01:30 AM Room Exhibit Hall 1 #205
More from the Same Authors
-
2023 : A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints »
Kareem Ahmed · Kai-Wei Chang · Guy Van den Broeck -
2023 : Collapsed Inference for Bayesian Deep Learning »
Zhe Zeng · Guy Van den Broeck -
2023 : SIMPLE: A Gradient Estimator for $k$-subset Sampling »
Kareem Ahmed · Zhe Zeng · Mathias Niepert · Guy Van den Broeck -
2023 : Probabilistic Task-Adaptive Graph Rewiring »
Chendi Qian · Andrei Manolache · Kareem Ahmed · Zhe Zeng · Guy Van den Broeck · Mathias Niepert · Christopher Morris -
2023 : A Unified Approach to Count-Based Weakly-Supervised Learning »
Vinay Shukla · Zhe Zeng · Kareem Ahmed · Guy Van den Broeck -
2023 : Panel on Reasoning Capabilities of LLMs »
Guy Van den Broeck · Ishita Dasgupta · Subbarao Kambhampati · Jiajun Wu · Xi Victoria Lin · Samy Bengio · Beliz Gunel -
2023 : AI can Learn from Data. But can it Learn to Reason? »
Guy Van den Broeck -
2023 Poster: Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits »
Xuejie Liu · Anji Liu · Guy Van den Broeck · Yitao Liang -
2022 : Session 3: New Computational Technologies for Reasoning »
Armando Solar-Lezama · Guy Van den Broeck · Jan-Willem van de Meent · Charles Sutton -
2021 Poster: Probabilistic Generating Circuits »
Honghua Zhang · Brendan Juba · Guy Van den Broeck -
2021 Oral: Probabilistic Generating Circuits »
Honghua Zhang · Brendan Juba · Guy Van den Broeck -
2020 : On the Relationship Between Probabilistic Circuits and Determinantal Point Processes »
Honghua Zhang · Steven Holtzen · Guy Van den Broeck -
2020 Poster: Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits »
Robert Peharz · Steven Lang · Antonio Vergari · Karl Stelzner · Alejandro Molina · Martin Trapp · Guy Van den Broeck · Kristian Kersting · Zoubin Ghahramani -
2020 Poster: Scaling up Hybrid Probabilistic Inference with Logical and Arithmetic Constraints via Message Passing »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2018 Poster: Sound Abstraction and Decomposition of Probabilistic Programs »
Steven Holtzen · Guy Van den Broeck · Todd Millstein -
2018 Oral: Sound Abstraction and Decomposition of Probabilistic Programs »
Steven Holtzen · Guy Van den Broeck · Todd Millstein -
2018 Poster: A Semantic Loss Function for Deep Learning with Symbolic Knowledge »
Jingyi Xu · Zilu Zhang · Tal Friedman · Yitao Liang · Guy Van den Broeck -
2018 Oral: A Semantic Loss Function for Deep Learning with Symbolic Knowledge »
Jingyi Xu · Zilu Zhang · Tal Friedman · Yitao Liang · Guy Van den Broeck