Timezone: »
Learning structured representations of the visual world in terms of objects promises to significantly improve the generalization abilities of current machine learning models. While recent efforts to this end have shown promising empirical progress, a theoretical account of when unsupervised object-centric representation learning is possible is still lacking. Consequently, understanding the reasons for the success of existing object-centric methods as well as designing new theoretically grounded methods remains challenging. In the present work, we analyze when object-centric representations can provably be learned without supervision. To this end, we first introduce two assumptions on the generative process for scenes comprised of several objects, which we call compositionality and irreducibility. Under this generative process, we prove that the ground-truth object representations can be identified by an invertible and compositional inference model, even in the presence of dependencies between objects. We empirically validate our results through experiments on synthetic data. Finally, we provide evidence that our theory holds predictive power for existing object-centric models by showing a close correspondence between models' compositionality and invertibility and their empirical identifiability.
Author Information
Jack Brady (Max Planck Institute for Intelligent Systems)
Roland S. Zimmermann (University of Tübingen, MPI-IS)
Yash Sharma (University of Tübingen)
Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany)
Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.
Julius von Kügelgen (MPI for Intelligent Systems, Tübingen & University of Cambridge)
Wieland Brendel (University of Tübingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Poster: Provably Learning Object-Centric Representations »
Thu. Jul 27th through Fri the 28th Room Exhibit Hall 1 #508
More from the Same Authors
-
2021 : How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
· Roland S. Zimmermann · Judith Borowski · Robert Geirhos · Matthias Bethge · Thomas SA Wallis · Wieland Brendel -
2021 : Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints »
Maura Pintor · Fabio Roli · Wieland Brendel · Battista Biggio -
2021 : On the Fairness of Causal Algorithmic Recourse »
Julius von Kügelgen · Amir-Hossein Karimi · Umang Bhatt · Isabel Valera · Adrian Weller · Bernhard Schölkopf · Amir-Hossein Karimi -
2021 : Algorithmic Recourse in Partially and Fully Confounded Settings Through Bounding Counterfactual Effects »
Julius von Kügelgen · Nikita Agarwal · Jakob Zeitler · Afsaneh Mastouri · Bernhard Schölkopf -
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wuthrich · Felix Widmaier · Peter V Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wüthrich · Felix Widmaier · Peter Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 : Lie interventions in complex systems with cycles »
Michel Besserve · Bernhard Schölkopf -
2022 : ImageNet-D: A new challenging robustness dataset inspired by domain adaptation »
Evgenia Rusak · Steffen Schneider · Peter V Gehler · Oliver Bringmann · Wieland Brendel · Matthias Bethge -
2022 : Maximum Mean Discrepancy Distributionally Robust Nonlinear Chance-Constrained Optimization with Finite-Sample Guarantee »
Yassine Nemmour · Heiner Kremer · Bernhard Schölkopf · Jia-Jie Zhu -
2022 : Pixel-level Correspondence for Self-Supervised Learning from Video »
Yash Sharma · Yi Zhu · Chris Russell · Thomas Brox -
2023 : Don't trust your eyes: on the (un)reliability of feature visualizations »
Robert Geirhos · Roland S. Zimmermann · Blair Bilodeau · Wieland Brendel · Been Kim -
2023 : Spuriosity Didn’t Kill the Classifier: Using Invariant Predictions to Harness Spurious Features »
Cian Eastwood · Shashank Singh · Andrei Nicolicioiu · Marin Vlastelica · Julius von Kügelgen · Bernhard Schölkopf -
2023 : Leveraging sparse and shared feature activations for disentangled representation learning »
Marco Fumero · Florian Wenzel · Luca Zancato · Alessandro Achille · Emanuele Rodola · Stefano Soatto · Bernhard Schölkopf · Francesco Locatello -
2023 : Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding »
Alizée Pace · Hugo Yèche · Bernhard Schölkopf · Gunnar Ratsch · Guy Tennenholtz -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding »
Alizée Pace · Hugo Yèche · Bernhard Schölkopf · Gunnar Ratsch · Guy Tennenholtz -
2023 : Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding »
Alizée Pace · Hugo Yèche · Bernhard Schölkopf · Gunnar Ratsch · Guy Tennenholtz -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Flow Matching for Scalable Simulation-Based Inference »
Jonas Wildberger · Maximilian Dax · Simon Buchholz · Stephen R. Green · Jakob Macke · Bernhard Schölkopf -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Flow Matching for Scalable Simulation-Based Inference »
Jonas Wildberger · Maximilian Dax · Simon Buchholz · Stephen R. Green · Jakob Macke · Bernhard Schölkopf -
2023 : Desiderata for Representation Learning from Identifiability, Disentanglement, and Group-Structuredness »
Hamza Keurti · Patrik Reizinger · Bernhard Schölkopf · Wieland Brendel -
2023 Poster: On the Identifiability and Estimation of Causal Location-Scale Noise Models »
Alexander Immer · Christoph Schultheiss · Julia Vogt · Bernhard Schölkopf · Peter Bühlmann · Alexander Marx -
2023 Poster: On Data Manifolds Entailed by Structural Causal Models »
Ricardo Dominguez-Olmedo · Amir-Hossein Karimi · Georgios Arvanitidis · Bernhard Schölkopf -
2023 Poster: The Hessian perspective into the Nature of Convolutional Neural Networks »
Sidak Pal Singh · Thomas Hofmann · Bernhard Schölkopf -
2023 Poster: Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels »
Alexander Immer · Tycho van der Ouderaa · Mark van der Wilk · Gunnar Ratsch · Bernhard Schölkopf -
2023 Poster: On the Relationship Between Explanation and Prediction: A Causal View »
Amir-Hossein Karimi · Krikamol Muandet · Simon Kornblith · Bernhard Schölkopf · Been Kim -
2023 Poster: Diffusion Based Representation Learning »
Sarthak Mittal · Korbinian Abstreiter · Stefan Bauer · Bernhard Schölkopf · Arash Mehrjou -
2023 Poster: Discrete Key-Value Bottleneck »
Frederik Träuble · Anirudh Goyal · Nasim Rahaman · Michael Mozer · Kenji Kawaguchi · Yoshua Bengio · Bernhard Schölkopf -
2023 Poster: Estimation Beyond Data Reweighting: Kernel Method of Moments »
Heiner Kremer · Yassine Nemmour · Bernhard Schölkopf · Jia-Jie Zhu -
2023 Poster: Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions »
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf -
2022 : ImageNet-D: A new challenging robustness dataset inspired by domain adaptation »
Evgenia Rusak · Steffen Schneider · Peter V Gehler · Oliver Bringmann · Wieland Brendel · Matthias Bethge -
2022 : Invited talks I, Q/A »
Bernhard Schölkopf · David Lopez-Paz -
2022 Workshop: Shift happens: Crowdsourcing metrics and test datasets beyond ImageNet »
Roland S. Zimmermann · Julian Bitterwolf · Evgenia Rusak · Steffen Schneider · Matthias Bethge · Wieland Brendel · Matthias Hein -
2022 : Invited Talks 1, Bernhard Schölkopf and David Lopez-Paz »
Bernhard Schölkopf · David Lopez-Paz -
2022 Poster: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Poster: Generalization and Robustness Implications in Object-Centric Learning »
Andrea Dittadi · Samuele Papa · Michele De Vita · Bernhard Schölkopf · Ole Winther · Francesco Locatello -
2022 Spotlight: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Generalization and Robustness Implications in Object-Centric Learning »
Andrea Dittadi · Samuele Papa · Michele De Vita · Bernhard Schölkopf · Ole Winther · Francesco Locatello -
2022 Poster: Causal Inference Through the Structural Causal Marginal Problem »
Luigi Gresele · Julius von Kügelgen · Jonas Kübler · Elke Kirschbaum · Bernhard Schölkopf · Dominik Janzing -
2022 Poster: Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions »
Heiner Kremer · Jia-Jie Zhu · Krikamol Muandet · Bernhard Schölkopf -
2022 Poster: On the Adversarial Robustness of Causal Algorithmic Recourse »
Ricardo Dominguez-Olmedo · Amir-Hossein Karimi · Bernhard Schölkopf -
2022 Spotlight: Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions »
Heiner Kremer · Jia-Jie Zhu · Krikamol Muandet · Bernhard Schölkopf -
2022 Spotlight: Causal Inference Through the Structural Causal Marginal Problem »
Luigi Gresele · Julius von Kügelgen · Jonas Kübler · Elke Kirschbaum · Bernhard Schölkopf · Dominik Janzing -
2022 Spotlight: On the Adversarial Robustness of Causal Algorithmic Recourse »
Ricardo Dominguez-Olmedo · Amir-Hossein Karimi · Bernhard Schölkopf -
2021 Poster: Function Contrastive Learning of Transferable Meta-Representations »
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf -
2021 Spotlight: Function Contrastive Learning of Transferable Meta-Representations »
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf -
2021 Poster: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Poster: Bayesian Quadrature on Riemannian Data Manifolds »
Christian Fröhlich · Alexandra Gessner · Philipp Hennig · Bernhard Schölkopf · Georgios Arvanitidis -
2021 Spotlight: Bayesian Quadrature on Riemannian Data Manifolds »
Christian Fröhlich · Alexandra Gessner · Philipp Hennig · Bernhard Schölkopf · Georgios Arvanitidis -
2021 Oral: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Poster: Contrastive Learning Inverts the Data Generating Process »
Roland S. Zimmermann · Yash Sharma · Steffen Schneider · Matthias Bethge · Wieland Brendel -
2021 Spotlight: Contrastive Learning Inverts the Data Generating Process »
Roland S. Zimmermann · Yash Sharma · Steffen Schneider · Matthias Bethge · Wieland Brendel -
2021 Poster: Necessary and sufficient conditions for causal feature selection in time series with latent common causes »
Atalanti Mastakouri · Bernhard Schölkopf · Dominik Janzing -
2021 Poster: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Spotlight: Necessary and sufficient conditions for causal feature selection in time series with latent common causes »
Atalanti Mastakouri · Bernhard Schölkopf · Dominik Janzing -
2021 Spotlight: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Poster: Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning »
Sumedh Sontakke · Arash Mehrjou · Laurent Itti · Bernhard Schölkopf -
2021 Spotlight: Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning »
Sumedh Sontakke · Arash Mehrjou · Laurent Itti · Bernhard Schölkopf -
2020 Workshop: Inductive Biases, Invariances and Generalization in Reinforcement Learning »
Anirudh Goyal · Rosemary Nan Ke · Jane Wang · Stefan Bauer · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer -
2020 Poster: Weakly-Supervised Disentanglement Without Compromises »
Francesco Locatello · Ben Poole · Gunnar Ratsch · Bernhard Schölkopf · Olivier Bachem · Michael Tschannen -
2019 Poster: Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness »
Raphael Suter · Djordje Miladinovic · Bernhard Schölkopf · Stefan Bauer -
2019 Oral: Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness »
Raphael Suter · Djordje Miladinovic · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Kernel Mean Matching for Content Addressability of GANs »
Wittawat Jitkrittum · Wittawat Jitkrittum · Patsorn Sangkloy · Muhammad Waleed Gondal · Amit Raj · James Hays · Bernhard Schölkopf -
2019 Oral: Kernel Mean Matching for Content Addressability of GANs »
Wittawat Jitkrittum · Wittawat Jitkrittum · Patsorn Sangkloy · Patsorn Sangkloy · Muhammad Waleed Gondal · Muhammad Waleed Gondal · Amit Raj · Amit Raj · James Hays · James Hays · Bernhard Schölkopf · Bernhard Schölkopf -
2019 Poster: First-Order Adversarial Vulnerability of Neural Networks and Input Dimension »
Carl-Johann Simon-Gabriel · Yann Ollivier · Leon Bottou · Bernhard Schölkopf · David Lopez-Paz -
2019 Poster: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2019 Oral: First-Order Adversarial Vulnerability of Neural Networks and Input Dimension »
Carl-Johann Simon-Gabriel · Yann Ollivier · Leon Bottou · Bernhard Schölkopf · David Lopez-Paz -
2019 Oral: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2018 Poster: Detecting non-causal artifacts in multivariate linear regression models »
Dominik Janzing · Bernhard Schölkopf -
2018 Poster: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Oral: Detecting non-causal artifacts in multivariate linear regression models »
Dominik Janzing · Bernhard Schölkopf -
2018 Oral: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Poster: Tempered Adversarial Networks »
Mehdi S. M. Sajjadi · Giambattista Parascandolo · Arash Mehrjou · Bernhard Schölkopf -
2018 Poster: Differentially Private Database Release via Kernel Mean Embeddings »
Matej Balog · Ilya Tolstikhin · Bernhard Schölkopf -
2018 Oral: Differentially Private Database Release via Kernel Mean Embeddings »
Matej Balog · Ilya Tolstikhin · Bernhard Schölkopf -
2018 Oral: Tempered Adversarial Networks »
Mehdi S. M. Sajjadi · Giambattista Parascandolo · Arash Mehrjou · Bernhard Schölkopf -
2018 Poster: Learning Independent Causal Mechanisms »
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf -
2018 Oral: Learning Independent Causal Mechanisms »
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf -
2017 Invited Talk: Causal Learning »
Bernhard Schölkopf