Timezone: »
We propose a hybrid neural network (NN) and PDE approach for learning generalizable PDE dynamics from motion observations. Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and constitutive models (or material models). Without explicit PDE knowledge, these approaches cannot guarantee physical correctness and have limited generalizability. We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned. Instead, constitutive models are particularly suitable for learning due to their data-fitting nature. To this end, we introduce a new framework termed "Neural Constitutive Laws" (NCLaw), which utilizes a network architecture that strictly guarantees standard constitutive priors, including rotation equivariance and undeformed state equilibrium. We embed this network inside a differentiable simulation and train the model by minimizing a loss function based on the difference between the simulation and the motion observation. We validate NCLaw on various large-deformation dynamical systems, ranging from solids to fluids. After training on a single motion trajectory, our method generalizes to new geometries, initial/boundary conditions, temporal ranges, and even multi-physics systems. On these extremely out-of-distribution generalization tasks, NCLaw is orders-of-magnitude more accurate than previous NN approaches. Real-world experiments demonstrate our method's ability to learn constitutive laws from videos.
Author Information
Pingchuan Ma (MIT CSAIL)
Peter Yichen Chen (MIT CSAIL)
Bolei Deng (Computer Science and Artificial Intelligence Laboratory, Electrical Engineering & Computer Science)
Josh Tenenbaum (MIT)
Joshua Brett Tenenbaum is Professor of Cognitive Science and Computation at the Massachusetts Institute of Technology. He is known for contributions to mathematical psychology and Bayesian cognitive science. He previously taught at Stanford University, where he was the Wasow Visiting Fellow from October 2010 to January 2011. Tenenbaum received his undergraduate degree in physics from Yale University in 1993, and his Ph.D. from MIT in 1999. His work primarily focuses on analyzing probabilistic inference as the engine of human cognition and as a means to develop machine learning.
Tao Du (Tsinghua University)
Chuang Gan (Umass Amherst/ IBM)
Wojciech Matusik (MIT)
More from the Same Authors
-
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Building Community Driven Libraries of Natural Programs »
Leonardo Hernandez Cano · Yewen Pu · Robert Hawkins · Josh Tenenbaum · Armando Solar-Lezama -
2023 : Inferring the Future by Imagining the Past »
Kartik Chandra · Tony Chen · Tzu-Mao Li · Jonathan Ragan-Kelley · Josh Tenenbaum -
2023 : Inferring the Goals of Communicating Agents from Actions and Instructions »
Lance Ying · Tan Zhi-Xuan · Vikash Mansinghka · Josh Tenenbaum -
2023 : The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling probabilistic social inferences from linguistic inputs »
Lance Ying · Katie Collins · Megan Wei · Cedegao Zhang · Tan Zhi-Xuan · Adrian Weller · Josh Tenenbaum · Catherine Wong -
2023 : Inferring the Future by Imagining the Past »
Kartik Chandra · Tony Chen · Tzu-Mao Li · Jonathan Ragan-Kelley · Josh Tenenbaum -
2023 Oral: Inferring Relational Potentials in Interacting Systems »
Armand Comas · Yilun Du · Christian Fernandez Lopez · Sandesh Ghimire · Mario Sznaier · Josh Tenenbaum · Octavia Camps -
2023 Poster: On the Complexity of Bayesian Generalization »
Yu-Zhe Shi · Manjie Xu · John Hopcroft · Kun He · Josh Tenenbaum · Song-Chun Zhu · Ying Nian Wu · Wenjuan Han · Yixin Zhu -
2023 Poster: Reparameterized Policy Learning for Multimodal Trajectory Optimization »
Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su -
2023 Poster: Inferring Relational Potentials in Interacting Systems »
Armand Comas · Yilun Du · Christian Fernandez Lopez · Sandesh Ghimire · Mario Sznaier · Josh Tenenbaum · Octavia Camps -
2023 Poster: On the Forward Invariance of Neural ODEs »
Wei Xiao · Johnson Tsun-Hsuan Wang · Ramin Hasani · Mathias Lechner · Yutong Ban · Chuang Gan · Daniela Rus -
2023 Poster: Hierarchical Grammar-Induced Geometry for Data-Efficient Molecular Property Prediction »
Minghao Guo · Veronika Thost · Samuel Song · Adithya Balachandran · Payel Das · Jie Chen · Wojciech Matusik -
2023 Oral: Reparameterized Policy Learning for Multimodal Trajectory Optimization »
Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su -
2023 Poster: Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC »
Yilun Du · Conor Durkan · Robin Strudel · Josh Tenenbaum · Sander Dieleman · Rob Fergus · Jascha Sohl-Dickstein · Arnaud Doucet · Will Grathwohl -
2023 Poster: Implicit Neural Spatial Representations for Time-dependent PDEs »
Honglin Chen · Rundi Wu · Eitan Grinspun · Changxi Zheng · Peter Yichen Chen -
2023 Poster: Learning Preconditioners for Conjugate Gradient PDE Solvers »
Yichen Li · Peter Yichen Chen · Tao Du · Wojciech Matusik -
2022 Poster: Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models »
Elvis Nava · John Zhang · Mike Yan Michelis · Tao Du · Pingchuan Ma · Benjamin F. Grewe · Wojciech Matusik · Robert Katzschmann -
2022 Poster: Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning »
Aviv Netanyahu · Tianmin Shu · Josh Tenenbaum · Pulkit Agrawal -
2022 Spotlight: Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning »
Aviv Netanyahu · Tianmin Shu · Josh Tenenbaum · Pulkit Agrawal -
2022 Spotlight: Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models »
Elvis Nava · John Zhang · Mike Yan Michelis · Tao Du · Pingchuan Ma · Benjamin F. Grewe · Wojciech Matusik · Robert Katzschmann -
2022 Poster: Planning with Diffusion for Flexible Behavior Synthesis »
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine -
2022 Oral: Planning with Diffusion for Flexible Behavior Synthesis »
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine -
2022 Poster: Learning Iterative Reasoning through Energy Minimization »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2022 Poster: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: Learning Iterative Reasoning through Energy Minimization »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2022 Spotlight: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2021 Poster: Global Prosody Style Transfer Without Text Transcriptions »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson -
2021 Oral: Global Prosody Style Transfer Without Text Transcriptions »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson -
2021 Poster: A large-scale benchmark for few-shot program induction and synthesis »
Ferran Alet · Javier Lopez-Contreras · James Koppel · Maxwell Nye · Armando Solar-Lezama · Tomas Lozano-Perez · Leslie Kaelbling · Josh Tenenbaum -
2021 Spotlight: A large-scale benchmark for few-shot program induction and synthesis »
Ferran Alet · Javier Lopez-Contreras · James Koppel · Maxwell Nye · Armando Solar-Lezama · Tomas Lozano-Perez · Leslie Kaelbling · Josh Tenenbaum -
2021 Poster: Adversarial Option-Aware Hierarchical Imitation Learning »
Mingxuan Jing · Wenbing Huang · Fuchun Sun · Xiaojian Ma · Tao Kong · Chuang Gan · Lei Li -
2021 Poster: AGENT: A Benchmark for Core Psychological Reasoning »
Tianmin Shu · Abhishek Bhandwaldar · Chuang Gan · Kevin Smith · Shari Liu · Dan Gutfreund · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2021 Spotlight: AGENT: A Benchmark for Core Psychological Reasoning »
Tianmin Shu · Abhishek Bhandwaldar · Chuang Gan · Kevin Smith · Shari Liu · Dan Gutfreund · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2021 Spotlight: Adversarial Option-Aware Hierarchical Imitation Learning »
Mingxuan Jing · Wenbing Huang · Fuchun Sun · Xiaojian Ma · Tao Kong · Chuang Gan · Lei Li -
2021 Poster: Improved Contrastive Divergence Training of Energy-Based Models »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2021 Poster: Leveraging Language to Learn Program Abstractions and Search Heuristics »
Catherine Wong · Kevin Ellis · Josh Tenenbaum · Jacob Andreas -
2021 Spotlight: Leveraging Language to Learn Program Abstractions and Search Heuristics »
Catherine Wong · Kevin Ellis · Josh Tenenbaum · Jacob Andreas -
2021 Spotlight: Improved Contrastive Divergence Training of Energy-Based Models »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2020 Poster: Visual Grounding of Learned Physical Models »
Yunzhu Li · Toru Lin · Kexin Yi · Daniel Bear · Daniel Yamins · Jiajun Wu · Josh Tenenbaum · Antonio Torralba -
2020 Poster: Efficient Continuous Pareto Exploration in Multi-Task Learning »
Pingchuan Ma · Tao Du · Wojciech Matusik -
2020 Poster: Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control »
Jie Xu · Yunsheng Tian · Pingchuan Ma · Daniela Rus · Shinjiro Sueda · Wojciech Matusik -
2019 Poster: Learning to Infer Program Sketches »
Maxwell Nye · Luke Hewitt · Josh Tenenbaum · Armando Solar-Lezama -
2019 Oral: Learning to Infer Program Sketches »
Maxwell Nye · Luke Hewitt · Josh Tenenbaum · Armando Solar-Lezama -
2019 Poster: Neural Inverse Knitting: From Images to Manufacturing Instructions »
Alexandre Kaspar · Tae-Hyun Oh · Liane Makatura · Petr Kellnhofer · Wojciech Matusik -
2019 Poster: Infinite Mixture Prototypes for Few-shot Learning »
Kelsey Allen · Evan Shelhamer · Hanul Shin · Josh Tenenbaum -
2019 Oral: Infinite Mixture Prototypes for Few-shot Learning »
Kelsey Allen · Evan Shelhamer · Hanul Shin · Josh Tenenbaum -
2019 Oral: Neural Inverse Knitting: From Images to Manufacturing Instructions »
Alexandre Kaspar · Tae-Hyun Oh · Liane Makatura · Petr Kellnhofer · Wojciech Matusik -
2019 Poster: Neurally-Guided Structure Inference »
Sidi Lu · Jiayuan Mao · Josh Tenenbaum · Jiajun Wu -
2019 Oral: Neurally-Guided Structure Inference »
Sidi Lu · Jiayuan Mao · Josh Tenenbaum · Jiajun Wu -
2018 Invited Talk: Building Machines that Learn and Think Like People »
Josh Tenenbaum