Timezone: »
Although graph neural networks (GNNs) have achieved impressive achievements in graph classification, they often need abundant task-specific labels, which could be extensively costly to acquire. A credible solution is to explore additional labeled graphs to enhance unsupervised learning on the target domain. However, how to apply GNNs to domain adaptation remains unsolved owing to the insufficient exploration of graph topology and the significant domain discrepancy. In this paper, we propose Coupled Contrastive Graph Representation Learning (CoCo), which extracts the topological information from coupled learning branches and reduces the domain discrepancy with coupled contrastive learning. CoCo contains a graph convolutional network branch and a hierarchical graph kernel network branch, which explore graph topology in implicit and explicit manners. Besides, we incorporate coupled branches into a holistic multi-view contrastive learning framework, which not only incorporates graph representations learned from complementary views for enhanced understanding, but also encourages the similarity between cross-domain example pairs with the same semantics for domain alignment. Extensive experiments on popular datasets show that our CoCo outperforms these competing baselines in different settings generally.
Author Information
Nan Yin (Mohamed bin Zayed University of Artificial Intelligence)
Li Shen (JD Explore Academy)
Mengzhu Wang (NUDT)
Long Lan (National University of Defense Technology,)
Zeyu Ma (Harbin Institute of Technology)
Chong Chen (Terminus Group)
Xian-Sheng Hua (Alibaba Group)
Xiao Luo (UCLA)
More from the Same Authors
-
2023 : Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning »
Guozheng Ma · · Haoyu Wang · Lu Li · Zilin Wang · Zhen Wang · Li Shen · Xueqian Wang · Dacheng Tao -
2023 Oral: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Poster: HOPE: High-order Graph ODE For Modeling Interacting Dynamics »
Xiao Luo · Jingyang Yuan · Zijie Huang · Huiyu Jiang · Yifang Qin · Wei Ju · Ming Zhang · Yizhou Sun -
2023 Poster: Are Large Kernels Better Teachers than Transformers for ConvNets? »
Tianjin Huang · Lu Yin · Zhenyu Zhang · Li Shen · Meng Fang · Mykola Pechenizkiy · Zhangyang “Atlas” Wang · Shiwei Liu -
2023 Poster: Improving the Model Consistency of Decentralized Federated Learning »
Yifan Shi · Li Shen · Kang Wei · Yan Sun · Bo Yuan · Xueqian Wang · Dacheng Tao -
2023 Poster: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Poster: Learning to Learn from APIs: Black-Box Data-Free Meta-Learning »
Zixuan Hu · Li Shen · Zhenyi Wang · Baoyuan Wu · Chun Yuan · Dacheng Tao -
2022 : Paper 12: SafeRL-Kit: Evaluating Efficient Reinforcement Learning Methods for Safe Autonomous Driving »
· Li Shen · Bo Yuan · Xueqian Wang -
2022 Poster: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Poster: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Spotlight: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Spotlight: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Poster: Improving Task-free Continual Learning by Distributionally Robust Memory Evolution »
Zhenyi Wang · Li Shen · Le Fang · Qiuling Suo · Tiehang Duan · Mingchen Gao -
2022 Poster: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: Improving Task-free Continual Learning by Distributionally Robust Memory Evolution »
Zhenyi Wang · Li Shen · Le Fang · Qiuling Suo · Tiehang Duan · Mingchen Gao -
2020 Poster: Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks »
Zhishuai Guo · Mingrui Liu · Zhuoning Yuan · Li Shen · Wei Liu · Tianbao Yang -
2020 Poster: Adversarial Mutual Information for Text Generation »
Boyuan Pan · Yazheng Yang · Kaizhao Liang · Bhavya Kailkhura · Zhongming Jin · Xian-Sheng Hua · Deng Cai · Bo Li -
2018 Poster: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2018 Oral: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2017 Poster: GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization »
Li Shen · Wei Liu · Ganzhao Yuan · Shiqian Ma -
2017 Talk: GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization »
Li Shen · Wei Liu · Ganzhao Yuan · Shiqian Ma