Timezone: »
Estimating heterogeneous treatment effects (HTE) is crucial for identifying the variation of treatment effects across individuals or subgroups. Most existing methods estimate HTE by removing the confounding bias from imbalanced treatment assignments. However, these methods may produce unreliable estimates of treatment effects and potentially allocate suboptimal treatment arms for underrepresented populations. To improve the estimation accuracy of HTE for underrepresented populations, we propose a novel Stable CounterFactual Regression (StableCFR) to smooth the population distribution and upsample the underrepresented subpopulations, while balancing confounders between treatment and control groups. Specifically, StableCFR upsamples the underrepresented data using uniform sampling, where each disjoint subpopulation is weighted proportional to the Lebesgue measure of its support. Moreover, StableCFR balances covariates by using an epsilon-greedy matching approach. Empirical results on both synthetic and real-world datasets demonstrate the superior performance of our StableCFR on estimating HTE for underrepresented populations.
Author Information
Anpeng Wu (Zhejiang University)
Kun Kuang (Zhejiang University)

Kun Kuang is an Associate Professor at the College of Computer Science and Technology, Zhejiang University. He received his Ph.D. in the Department of Computer Science and Technology at Tsinghua University in 2019. He was a visiting scholar with Prof. Susan Athey's Group at Stanford University. His main research interests include Causal Inference, Data Mining, and Causality Inspired Machine Learning. He has published over 70 papers in prestigious conferences and journals in data mining and machine learning, including TKDE, TPAMI, ICML, NeurIPS, KDD, ICDE, WWW, MM, DMKD, Engineering, etc. He received ACM SIGAI China Rising Star Award in 2022.
Ruoxuan Xiong (Stanford University)
Bo Li (Tsinghua University)
Fei Wu (Zhejiang University, China)
More from the Same Authors
-
2022 : Towards Multi-level Fairness and Robustness on Federated Learning »
Fengda Zhang · Kun Kuang · Yuxuan Liu · Long Chen · Jiaxun Lu · Yunfeng Shao · Fei Wu · Chao Wu · Jun Xiao -
2023 Poster: Competing for Shareable Arms in Multi-Player Multi-Armed Bandits »
Renzhe Xu · Haotian Wang · Xingxuan Zhang · Bo Li · Peng Cui -
2023 Poster: Causal Structure Learning for Latent Intervened Non-stationary Data »
Chenxi Liu · Kun Kuang -
2022 Poster: Counterfactual Prediction for Outcome-Oriented Treatments »
Hao Zou · Bo Li · Jiangang Han · Shuiping Chen · Xuetao Ding · Peng Cui -
2022 Spotlight: Counterfactual Prediction for Outcome-Oriented Treatments »
Hao Zou · Bo Li · Jiangang Han · Shuiping Chen · Xuetao Ding · Peng Cui -
2022 Poster: The Role of Deconfounding in Meta-learning »
Yinjie Jiang · Zhengyu Chen · Kun Kuang · Luotian Yuan · Xinhai Ye · Zhihua Wang · Fei Wu · Ying WEI -
2022 Poster: Instrumental Variable Regression with Confounder Balancing »
Anpeng Wu · Kun Kuang · Bo Li · Fei Wu -
2022 Poster: Deconfounded Value Decomposition for Multi-Agent Reinforcement Learning »
Jiahui Li · Kun Kuang · Baoxiang Wang · Furui Liu · Long Chen · Changjie Fan · Fei Wu · Jun Xiao -
2022 Spotlight: Deconfounded Value Decomposition for Multi-Agent Reinforcement Learning »
Jiahui Li · Kun Kuang · Baoxiang Wang · Furui Liu · Long Chen · Changjie Fan · Fei Wu · Jun Xiao -
2022 Spotlight: Instrumental Variable Regression with Confounder Balancing »
Anpeng Wu · Kun Kuang · Bo Li · Fei Wu -
2022 Spotlight: The Role of Deconfounding in Meta-learning »
Yinjie Jiang · Zhengyu Chen · Kun Kuang · Luotian Yuan · Xinhai Ye · Zhihua Wang · Fei Wu · Ying WEI -
2021 Poster: KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation »
Haozhe Feng · Zhaoyang You · Minghao Chen · Tianye Zhang · Minfeng Zhu · Fei Wu · Chao Wu · Wei Chen -
2021 Spotlight: KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation »
Haozhe Feng · Zhaoyang You · Minghao Chen · Tianye Zhang · Minfeng Zhu · Fei Wu · Chao Wu · Wei Chen -
2021 Poster: Heterogeneous Risk Minimization »
Jiashuo Liu · Zheyuan Hu · Peng Cui · Bo Li · Zheyan Shen -
2021 Spotlight: Heterogeneous Risk Minimization »
Jiashuo Liu · Zheyuan Hu · Peng Cui · Bo Li · Zheyan Shen -
2021 Poster: Explainable Automated Graph Representation Learning with Hyperparameter Importance »
Xin Wang · Shuyi Fan · Kun Kuang · Wenwu Zhu -
2021 Spotlight: Explainable Automated Graph Representation Learning with Hyperparameter Importance »
Xin Wang · Shuyi Fan · Kun Kuang · Wenwu Zhu -
2020 Poster: Description Based Text Classification with Reinforcement Learning »
Duo Chai · Wei Wu · Qinghong Han · Fei Wu · Jiwei Li -
2019 Poster: Disentangled Graph Convolutional Networks »
Jianxin Ma · Peng Cui · Kun Kuang · Xin Wang · Wenwu Zhu -
2019 Oral: Disentangled Graph Convolutional Networks »
Jianxin Ma · Peng Cui · Kun Kuang · Xin Wang · Wenwu Zhu