Timezone: »
Poster
Long Horizon Temperature Scaling
Andy Shih · Dorsa Sadigh · Stefano Ermon
Temperature scaling is a popular technique for tuning the sharpness of a model distribution. It is used extensively for sampling likely generations and calibrating model uncertainty, and even features as a controllable parameter to many large language models in deployment. However, autoregressive models rely on myopic temperature scaling that greedily optimizes the next token. To address this, we propose *Long Horizon Temperature Scaling* (LHTS), a novel approach for sampling from temperature-scaled *joint* distributions. LHTS is compatible with all likelihood-based models, and optimizes for the long-horizon likelihood of samples. We derive a temperature-dependent LHTS objective, and show that fine-tuning a model on a range of temperatures produces a single model capable of generation with a controllable long-horizon temperature parameter. We experiment with LHTS on image diffusion models and character/language autoregressive models, demonstrating its advantages over myopic temperature scaling in likelihood and sample quality, and showing improvements in accuracy of a multiple choice analogy by $10$%.
Author Information
Andy Shih (Stanford University)
Dorsa Sadigh (Stanford University)
Stefano Ermon (Stanford University)
More from the Same Authors
-
2022 : Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher Re · Stefano Ermon -
2023 : The Role of Linguistic Priors in Measuring Compositional Generalization of Vision-language Models »
Chenwei Wu · Li Li · Stefano Ermon · Patrick Haffner · Rong Ge · Zaiwei Zhang -
2023 : Parallel Sampling of Diffusion Models »
Andy Shih · Suneel Belkhale · Stefano Ermon · Dorsa Sadigh · Nima Anari -
2023 : On the Equivalence of Consistency-Type Models: Consistency Models, Consistent Diffusion Models, and Fokker-Planck Regularization »
Chieh-Hsin Lai · Yuhta Takida · Toshimitsu Uesaka · Naoki Murata · Yuki Mitsufuji · Stefano Ermon -
2023 : Parallel Sampling of Diffusion Models »
Andy Shih · Suneel Belkhale · Stefano Ermon · Dorsa Sadigh · Nima Anari -
2023 : Direct Preference Optimization: Your Language Model is Secretly a Reward Model »
Rafael Rafailov · Archit Sharma · Eric Mitchell · Stefano Ermon · Christopher Manning · Chelsea Finn -
2023 : Inverse Preference Learning: Preference-based RL without a Reward Function »
Joey Hejna · Dorsa Sadigh -
2023 : Invited Talk by Stefano Ermon »
Stefano Ermon -
2023 : Aligning Robots with Human Preferences »
Dorsa Sadigh -
2023 Workshop: Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators »
Felix Petersen · Marco Cuturi · Mathias Niepert · Hilde Kuehne · Michael Kagan · Willie Neiswanger · Stefano Ermon -
2023 Oral: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: Generating Language Corrections for Teaching Physical Control Tasks »
Megha Srivastava · Noah Goodman · Dorsa Sadigh -
2023 Poster: Distance Weighted Supervised Learning for Offline Interaction Data »
Joey Hejna · Jensen Gao · Dorsa Sadigh -
2023 Poster: Geometric Latent Diffusion Models for 3D Molecule Generation »
Minkai Xu · Alexander Powers · Ron Dror · Stefano Ermon · Jure Leskovec -
2023 Poster: Reflected Diffusion Models »
Aaron Lou · Stefano Ermon -
2023 Poster: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration »
Naoki Murata · Koichi Saito · Chieh-Hsin Lai · Yuhta Takida · Toshimitsu Uesaka · Yuki Mitsufuji · Stefano Ermon -
2023 Poster: FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation »
Chieh-Hsin Lai · Yuhta Takida · Naoki Murata · Toshimitsu Uesaka · Yuki Mitsufuji · Stefano Ermon -
2023 Poster: Deep Latent State Space Models for Time-Series Generation »
Linqi Zhou · Michael Poli · Winnie Xu · Stefano Massaroli · Stefano Ermon -
2023 Oral: GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration »
Naoki Murata · Koichi Saito · Chieh-Hsin Lai · Yuhta Takida · Toshimitsu Uesaka · Yuki Mitsufuji · Stefano Ermon -
2023 Poster: Language Instructed Reinforcement Learning for Human-AI Coordination »
Hengyuan Hu · Dorsa Sadigh -
2023 Poster: CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations »
Gengchen Mai · Ni Lao · Yutong He · Jiaming Song · Stefano Ermon -
2022 : FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness »
Tri Dao · Daniel Y Fu · Stefano Ermon · Atri Rudra · Christopher Re -
2022 : Generative Modeling with Stochastic Differential Equations »
Stefano Ermon -
2022 : Neural Geometric Embedding Flows »
Aaron Lou · Yang Song · Jiaming Song · Stefano Ermon -
2022 Workshop: Adaptive Experimental Design and Active Learning in the Real World »
Mojmir Mutny · Willie Neiswanger · Ilija Bogunovic · Stefano Ermon · Yisong Yue · Andreas Krause -
2022 Poster: Imitation Learning by Estimating Expertise of Demonstrators »
Mark Beliaev · Andy Shih · Stefano Ermon · Dorsa Sadigh · Ramtin Pedarsani -
2022 Spotlight: Imitation Learning by Estimating Expertise of Demonstrators »
Mark Beliaev · Andy Shih · Stefano Ermon · Dorsa Sadigh · Ramtin Pedarsani -
2022 Poster: A General Recipe for Likelihood-free Bayesian Optimization »
Jiaming Song · Lantao Yu · Willie Neiswanger · Stefano Ermon -
2022 Oral: A General Recipe for Likelihood-free Bayesian Optimization »
Jiaming Song · Lantao Yu · Willie Neiswanger · Stefano Ermon -
2022 Poster: ButterflyFlow: Building Invertible Layers with Butterfly Matrices »
Chenlin Meng · Linqi Zhou · Kristy Choi · Tri Dao · Stefano Ermon -
2022 Poster: Bit Prioritization in Variational Autoencoders via Progressive Coding »
Rui Shu · Stefano Ermon -
2022 Poster: Modular Conformal Calibration »
Charles Marx · Shengjia Zhao · Willie Neiswanger · Stefano Ermon -
2022 Spotlight: Bit Prioritization in Variational Autoencoders via Progressive Coding »
Rui Shu · Stefano Ermon -
2022 Spotlight: Modular Conformal Calibration »
Charles Marx · Shengjia Zhao · Willie Neiswanger · Stefano Ermon -
2022 Spotlight: ButterflyFlow: Building Invertible Layers with Butterfly Matrices »
Chenlin Meng · Linqi Zhou · Kristy Choi · Tri Dao · Stefano Ermon -
2022 : Learning to interact: LET’S LEARN IT ALL Implicit coordination though learned representations »
Dorsa Sadigh -
2022 : Learning to interact: GAME! Coordinating actions with humans via game theory »
Dorsa Sadigh -
2022 : Q&A »
Dorsa Sadigh · Anca Dragan -
2022 : Learning objectives and preferences: HOW? Actively »
Dorsa Sadigh -
2022 Tutorial: Learning for Interactive Agents »
Dorsa Sadigh · Anca Dragan -
2021 : The Role of Conventions in Adaptive Human-AI Collaboration »
Dorsa Sadigh -
2021 : Invited Talk 5 (Stefano Ermon): Maximum Likelihood Training of Score-Based Diffusion Models »
Stefano Ermon -
2021 Poster: Temporal Predictive Coding For Model-Based Planning In Latent Space »
Tung Nguyen · Rui Shu · Tuan Pham · Hung Bui · Stefano Ermon -
2021 Spotlight: Temporal Predictive Coding For Model-Based Planning In Latent Space »
Tung Nguyen · Rui Shu · Tuan Pham · Hung Bui · Stefano Ermon -
2021 Poster: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information »
Willie Neiswanger · Ke Alexander Wang · Stefano Ermon -
2021 Spotlight: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information »
Willie Neiswanger · Ke Alexander Wang · Stefano Ermon -
2021 Poster: Accelerating Feedforward Computation via Parallel Nonlinear Equation Solving »
Yang Song · Chenlin Meng · Renjie Liao · Stefano Ermon -
2021 Spotlight: Accelerating Feedforward Computation via Parallel Nonlinear Equation Solving »
Yang Song · Chenlin Meng · Renjie Liao · Stefano Ermon -
2021 Poster: Reward Identification in Inverse Reinforcement Learning »
Kuno Kim · Shivam Garg · Kirankumar Shiragur · Stefano Ermon -
2021 Spotlight: Reward Identification in Inverse Reinforcement Learning »
Kuno Kim · Shivam Garg · Kirankumar Shiragur · Stefano Ermon -
2021 Poster: Targeted Data Acquisition for Evolving Negotiation Agents »
Minae Kwon · Siddharth Karamcheti · Mariano-Florentino Cuellar · Dorsa Sadigh -
2021 Spotlight: Targeted Data Acquisition for Evolving Negotiation Agents »
Minae Kwon · Siddharth Karamcheti · Mariano-Florentino Cuellar · Dorsa Sadigh -
2020 : "Active Learning of Robot Reward Functions" »
Dorsa Sadigh -
2020 Poster: Predictive Coding for Locally-Linear Control »
Rui Shu · Tung Nguyen · Yinlam Chow · Tuan Pham · Khoat Than · Mohammad Ghavamzadeh · Stefano Ermon · Hung Bui -
2020 Poster: Bridging the Gap Between f-GANs and Wasserstein GANs »
Jiaming Song · Stefano Ermon -
2020 Poster: Individual Calibration with Randomized Forecasting »
Shengjia Zhao · Tengyu Ma · Stefano Ermon -
2020 Poster: Domain Adaptive Imitation Learning »
Kuno Kim · Yihong Gu · Jiaming Song · Shengjia Zhao · Stefano Ermon -
2020 Poster: Training Deep Energy-Based Models with f-Divergence Minimization »
Lantao Yu · Yang Song · Jiaming Song · Stefano Ermon -
2020 Poster: Fair Generative Modeling via Weak Supervision »
Kristy Choi · Aditya Grover · Trisha Singh · Rui Shu · Stefano Ermon -
2019 : Dorsa Sadigh: "Influencing Interactive Mixed-Autonomy Systems" »
Dorsa Sadigh -
2019 Poster: Calibrated Model-Based Deep Reinforcement Learning »
Ali Malik · Volodymyr Kuleshov · Jiaming Song · Danny Nemer · Harlan Seymour · Stefano Ermon -
2019 Poster: Graphite: Iterative Generative Modeling of Graphs »
Aditya Grover · Aaron Zweig · Stefano Ermon -
2019 Poster: Adaptive Antithetic Sampling for Variance Reduction »
Hongyu Ren · Shengjia Zhao · Stefano Ermon -
2019 Oral: Adaptive Antithetic Sampling for Variance Reduction »
Hongyu Ren · Shengjia Zhao · Stefano Ermon -
2019 Oral: Graphite: Iterative Generative Modeling of Graphs »
Aditya Grover · Aaron Zweig · Stefano Ermon -
2019 Oral: Calibrated Model-Based Deep Reinforcement Learning »
Ali Malik · Volodymyr Kuleshov · Jiaming Song · Danny Nemer · Harlan Seymour · Stefano Ermon -
2019 Poster: Multi-Agent Adversarial Inverse Reinforcement Learning »
Lantao Yu · Jiaming Song · Stefano Ermon -
2019 Poster: Neural Joint Source-Channel Coding »
Kristy Choi · Kedar Tatwawadi · Aditya Grover · Tsachy Weissman · Stefano Ermon -
2019 Oral: Neural Joint Source-Channel Coding »
Kristy Choi · Kedar Tatwawadi · Aditya Grover · Tsachy Weissman · Stefano Ermon -
2019 Oral: Multi-Agent Adversarial Inverse Reinforcement Learning »
Lantao Yu · Jiaming Song · Stefano Ermon -
2018 Poster: Modeling Sparse Deviations for Compressed Sensing using Generative Models »
Manik Dhar · Aditya Grover · Stefano Ermon -
2018 Oral: Modeling Sparse Deviations for Compressed Sensing using Generative Models »
Manik Dhar · Aditya Grover · Stefano Ermon -
2018 Poster: Accelerating Natural Gradient with Higher-Order Invariance »
Yang Song · Jiaming Song · Stefano Ermon -
2018 Poster: Accurate Uncertainties for Deep Learning Using Calibrated Regression »
Volodymyr Kuleshov · Nathan Fenner · Stefano Ermon -
2018 Oral: Accelerating Natural Gradient with Higher-Order Invariance »
Yang Song · Jiaming Song · Stefano Ermon -
2018 Oral: Accurate Uncertainties for Deep Learning Using Calibrated Regression »
Volodymyr Kuleshov · Nathan Fenner · Stefano Ermon -
2017 Poster: Learning Hierarchical Features from Deep Generative Models »
Shengjia Zhao · Jiaming Song · Stefano Ermon -
2017 Talk: Learning Hierarchical Features from Deep Generative Models »
Shengjia Zhao · Jiaming Song · Stefano Ermon