Timezone: »
Poster
Moderately Distributional Exploration for Domain Generalization
Rui Dai · Yonggang Zhang · zhen fang · Bo Han · Xinmei Tian
Domain generalization (DG) aims to tackle the distribution shift between training domains and unknown target domains. Generating new domains is one of the most effective approaches, yet its performance gain depends on the distribution discrepancy between the generated and target domains. Distributionally robust optimization is promising to tackle distribution discrepancy by exploring domains in an uncertainty set. However, the uncertainty set may be overwhelmingly large, leading to low-confidence prediction in DG. It is because a large uncertainty set could introduce domains containing semantically different factors from training domains. To address this issue, we propose to perform a $\textit{mo}$derately $\textit{d}$istributional $\textit{e}$xploration (MODE) for domain generalization. Specifically, MODE performs distribution exploration in an uncertainty $\textit{subset}$ that shares the same semantic factors with the training domains. We show that MODE can endow models with provable generalization performance on unknown target domains. The experimental results show that MODE achieves competitive performance compared to state-of-the-art baselines.
Author Information
Rui Dai (University of Science and Technology of China)
Yonggang Zhang (Hong Kong Baptist University)
zhen fang (AAII UTS)
Bo Han (HKBU / RIKEN)
Xinmei Tian (University of Science and Technology of China)
More from the Same Authors
-
2022 : Invariance Principle Meets Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · Kaili MA · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 : Pareto Invariant Risk Minimization »
Yongqiang Chen · Kaiwen Zhou · Yatao Bian · Binghui Xie · Kaili MA · Yonggang Zhang · Han Yang · Bo Han · James Cheng -
2023 : Towards Understanding Feature Learning in Out-of-Distribution Generalization »
Yongqiang Chen · Wei Huang · Kaiwen Zhou · Yatao Bian · Bo Han · James Cheng -
2023 Poster: Structured Cooperative Learning with Graphical Model Priors »
Shuangtong Li · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2023 Poster: Diversity-enhancing Generative Network for Few-shot Hypothesis Adaptation »
Ruijiang Dong · Feng Liu · Haoang Chi · Tongliang Liu · Mingming Gong · Gang Niu · Masashi Sugiyama · Bo Han -
2023 Poster: Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score »
Shuhai Zhang · Feng Liu · Jiahao Yang · 逸凡 杨 · Changsheng Li · Bo Han · Mingkui Tan -
2023 Poster: Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability »
Jianing Zhu · Hengzhuang Li · Jiangchao Yao · Tongliang Liu · Jianliang Xu · Bo Han -
2023 Poster: A Universal Unbiased Method for Classification from Aggregate Observations »
Zixi Wei · Lei Feng · Bo Han · Tongliang Liu · Gang Niu · Xiaofeng Zhu · Heng Tao Shen -
2023 Poster: Exploring Model Dynamics for Accumulative Poisoning Discovery »
Jianing Zhu · Xiawei Guo · Jiangchao Yao · Chao Du · LI He · Shuo Yuan · Tongliang Liu · Liang Wang · Bo Han -
2023 Poster: Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? »
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu -
2023 Poster: On Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation »
Zhanke Zhou · Chenyu Zhou · Xuan Li · Jiangchao Yao · QUANMING YAO · Bo Han -
2023 Poster: Detecting Out-of-distribution Data through In-distribution Class Prior »
Xue JIANG · Feng Liu · zhen fang · Hong Chen · Tongliang Liu · Feng Zheng · Bo Han -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Contrastive Learning with Boosted Memorization »
Zhihan Zhou · Jiangchao Yao · Yan-Feng Wang · Bo Han · Ya Zhang -
2022 Poster: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2022 Poster: Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning »
Zhenheng Tang · Yonggang Zhang · Shaohuai Shi · Xin He · Bo Han · Xiaowen Chu -
2022 Spotlight: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2022 Spotlight: Contrastive Learning with Boosted Memorization »
Zhihan Zhou · Jiangchao Yao · Yan-Feng Wang · Bo Han · Ya Zhang -
2022 Spotlight: Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning »
Zhenheng Tang · Yonggang Zhang · Shaohuai Shi · Xin He · Bo Han · Xiaowen Chu -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Poster: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Poster: Modeling Adversarial Noise for Adversarial Training »
Dawei Zhou · Nannan Wang · Bo Han · Tongliang Liu -
2022 Poster: Improving Adversarial Robustness via Mutual Information Estimation »
Dawei Zhou · Nannan Wang · Xinbo Gao · Bo Han · Xiaoyu Wang · Yibing Zhan · Tongliang Liu -
2022 Spotlight: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Spotlight: Improving Adversarial Robustness via Mutual Information Estimation »
Dawei Zhou · Nannan Wang · Xinbo Gao · Bo Han · Xiaoyu Wang · Yibing Zhan · Tongliang Liu -
2022 Spotlight: Modeling Adversarial Noise for Adversarial Training »
Dawei Zhou · Nannan Wang · Bo Han · Tongliang Liu -
2022 Spotlight: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Poster: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Spotlight: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2021 Poster: Towards Defending against Adversarial Examples via Attack-Invariant Features »
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao -
2021 Spotlight: Towards Defending against Adversarial Examples via Attack-Invariant Features »
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao -
2020 Poster: Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks »
Yonggang Zhang · Ya Li · Tongliang Liu · Xinmei Tian