Timezone: »
Deep topic models have shown an impressive ability to extract multi-layer document latent representations and discover hierarchical semantically meaningful topics.However, most deep topic models are limited to the single-step generative process, despite the fact that the progressive generative process has achieved impressive performance in modeling image data. To this end, in this paper, we propose a novel progressive deep topic model that consists of a knowledge-informed textural data coarsening process and a corresponding progressive generative model. The former is used to build multi-level observations ranging from concrete to abstract, while the latter is used to generate more concrete observations gradually. Additionally, we incorporate a graph-enhanced decoder to capture the semantic relationships among words at different levels of observation. Furthermore, we perform a theoretical analysis of the proposed model based on the principle of information theory and show how it can alleviate the well-known "latent variable collapse" problem. Finally, extensive experiments demonstrate that our proposed model effectively improves the ability of deep topic models, resulting in higher-quality latent document representations and topics.
Author Information
Zhibin Duan (Xidian University)
Xinyang Liu (Xidian University)
Yudi Su (xidian university )
Yishi Xu (Xidian University)
Bo Chen (School of Electronic Engineering, Xidian University)
Bo Chen, Ph.D., Professor. Before joining the Department of Electronic Engineering in Xidian University in 2013, I was a post-doc researcher, research scientist and senior research scientist at the Department of Electrical and Computer Engineering in Duke University. In 2013 and 2014, I was elected into the Program for New Century Excellent Talents in University and the Program for Thousand Youth Talents respectively. I am interested in developing statistical machine learning methods for the complex and large-scale data. My current interests are in statistical signal processing, statistical machine learning, deep learning and their applications to radar target detection and recognition.
Mingyuan Zhou (University of Texas at Austin)
More from the Same Authors
-
2023 Poster: Prototype-oriented unsupervised anomaly detection for multivariate time series »
yuxin li · Wenchao Chen · Bo Chen · Dongsheng Wang · Long Tian · Mingyuan Zhou -
2023 Poster: Learning to Jump: Thinning and Thickening Latent Counts for Generative Modeling »
Tianqi Chen · Mingyuan Zhou -
2023 Poster: POUF: Prompt-Oriented Unsupervised Fine-tuning for Large Pre-trained Models »
Korawat Tanwisuth · Shujian Zhang · Huangjie Zheng · Pengcheng He · Mingyuan Zhou -
2022 Poster: Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection »
Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou -
2022 Poster: Bayesian Deep Embedding Topic Meta-Learner »
Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou -
2022 Spotlight: Bayesian Deep Embedding Topic Meta-Learner »
Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou -
2022 Spotlight: Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection »
Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou -
2022 Poster: Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning »
Shentao Yang · Yihao Feng · Shujian Zhang · Mingyuan Zhou -
2022 Spotlight: Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning »
Shentao Yang · Yihao Feng · Shujian Zhang · Mingyuan Zhou -
2021 Poster: Bayesian Attention Belief Networks »
Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou -
2021 Spotlight: Bayesian Attention Belief Networks »
Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou -
2021 Poster: Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network »
Zhibin Duan · Dongsheng Wang · Bo Chen · CHAOJIE WANG · Wenchao Chen · yewen li · Jie Ren · Mingyuan Zhou -
2021 Poster: ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables »
Alek Dimitriev · Mingyuan Zhou -
2021 Spotlight: ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables »
Alek Dimitriev · Mingyuan Zhou -
2021 Spotlight: Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network »
Zhibin Duan · Dongsheng Wang · Bo Chen · CHAOJIE WANG · Wenchao Chen · yewen li · Jie Ren · Mingyuan Zhou -
2020 Poster: Thompson Sampling via Local Uncertainty »
Zhendong Wang · Mingyuan Zhou -
2020 Poster: Bayesian Graph Neural Networks with Adaptive Connection Sampling »
Arman Hasanzadeh · Ehsan Hajiramezanali · Shahin Boluki · Mingyuan Zhou · Nick Duffield · Krishna Narayanan · Xiaoning Qian -
2020 Poster: Recurrent Hierarchical Topic-Guided RNN for Language Generation »
Dandan Guo · Bo Chen · Ruiying Lu · Mingyuan Zhou -
2019 Poster: ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables »
Mingzhang Yin · Yuguang Yue · Mingyuan Zhou -
2019 Oral: ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables »
Mingzhang Yin · Yuguang Yue · Mingyuan Zhou -
2019 Poster: Convolutional Poisson Gamma Belief Network »
CHAOJIE WANG · Bo Chen · SUCHENG XIAO · Mingyuan Zhou -
2019 Poster: Locally Private Bayesian Inference for Count Models »
Aaron Schein · Steven Wu · Alexandra Schofield · Mingyuan Zhou · Hanna Wallach -
2019 Oral: Convolutional Poisson Gamma Belief Network »
CHAOJIE WANG · Bo Chen · SUCHENG XIAO · Mingyuan Zhou -
2019 Oral: Locally Private Bayesian Inference for Count Models »
Aaron Schein · Steven Wu · Alexandra Schofield · Mingyuan Zhou · Hanna Wallach -
2018 Poster: Inter and Intra Topic Structure Learning with Word Embeddings »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Oral: Inter and Intra Topic Structure Learning with Word Embeddings »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Poster: Semi-Implicit Variational Inference »
Mingzhang Yin · Mingyuan Zhou -
2018 Oral: Semi-Implicit Variational Inference »
Mingzhang Yin · Mingyuan Zhou -
2017 Poster: Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC »
Yulai Cong · Bo Chen · Hongwei Liu · Mingyuan Zhou -
2017 Talk: Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC »
Yulai Cong · Bo Chen · Hongwei Liu · Mingyuan Zhou