Timezone: »
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input. Existing approaches condition neural radiance fields (NeRF) on local image features, projecting points to the input image plane, and aggregating 2D features to perform volume rendering. However, under severe occlusion, this projection fails to resolve uncertainty, resulting in blurry renderings that lack details. In this work, we propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test-time. We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views. Our approach significantly outperforms existing NeRF-based and geometry-free approaches on challenging datasets including ShapeNet, ABO, and Clevr3D.
Author Information
Jiatao Gu (Apple (MLR))
Alex Trevithick (UC San Diego)
Kai-En Lin (University of California, San Diego)
Joshua M Susskind (Apple, Inc.)
Christian Theobalt (Max-Planck-Institute for Informatics, Saarland Informatics Campus)
Lingjie Liu (University of Pennsylvania, University of Pennsylvania)
Ravi Ramamoorthi (University of California, San Diego)
More from the Same Authors
-
2021 : Implicit Acceleration and Feature Learning in Infinitely Wide Neural Networks with Bottlenecks »
Etai Littwin · Omid Saremi · Shuangfei Zhai · Vimal Thilak · Hanlin Goh · Joshua M Susskind · Greg Yang -
2021 : Implicit Greedy Rank Learning in Autoencoders via Overparameterized Linear Networks »
Shih-Yu Sun · Vimal Thilak · Etai Littwin · Omid Saremi · Joshua M Susskind -
2023 : BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping »
Jiatao Gu · Shuangfei Zhai · Yizhe Zhang · Lingjie Liu · Joshua M Susskind -
2023 Poster: Stabilizing Transformer Training by Preventing Attention Entropy Collapse »
Shuangfei Zhai · Tatiana Likhomanenko · Etai Littwin · Dan Busbridge · Jason Ramapuram · Yizhe Zhang · Jiatao Gu · Joshua M Susskind -
2022 Poster: Efficient Representation Learning via Adaptive Context Pooling »
Chen Huang · Walter Talbott · Navdeep Jaitly · Joshua M Susskind -
2022 Spotlight: Efficient Representation Learning via Adaptive Context Pooling »
Chen Huang · Walter Talbott · Navdeep Jaitly · Joshua M Susskind -
2022 Poster: Position Prediction as an Effective Pretraining Strategy »
Shuangfei Zhai · Navdeep Jaitly · Jason Ramapuram · Dan Busbridge · Tatiana Likhomanenko · Joseph Cheng · Walter Talbott · Chen Huang · Hanlin Goh · Joshua M Susskind -
2022 Spotlight: Position Prediction as an Effective Pretraining Strategy »
Shuangfei Zhai · Navdeep Jaitly · Jason Ramapuram · Dan Busbridge · Tatiana Likhomanenko · Joseph Cheng · Walter Talbott · Chen Huang · Hanlin Goh · Joshua M Susskind -
2021 Poster: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Spotlight: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2020 Poster: Equivariant Neural Rendering »
Emilien Dupont · Miguel Angel Bautista Martin · Alex Colburn · Aditya Sankar · Joshua M Susskind · Qi Shan -
2019 Poster: Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment »
Chen Huang · Shuangfei Zhai · Walter Talbott · Miguel Angel Bautista Martin · Shih-Yu Sun · Carlos Guestrin · Joshua M Susskind -
2019 Oral: Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment »
Chen Huang · Shuangfei Zhai · Walter Talbott · Miguel Angel Bautista Martin · Shih-Yu Sun · Carlos Guestrin · Joshua M Susskind