Timezone: »
Poster
A Law of Robustness beyond Isoperimetry
Yihan Wu · Heng Huang · Hongyang Zhang
We study the robust interpolation problem of arbitrary data distributions supported on a bounded space and propose a two-fold law of robustness. Robust interpolation refers to the problem of interpolating $n$ noisy training data points in $R^d$ by a Lipschitz function. Although this problem has been well understood when the samples are drawn from an isoperimetry distribution, much remains unknown concerning its performance under generic or even the worst-case distributions. We prove a Lipschitzness lower bound $\Omega(\sqrt{n/p})$ of the interpolating neural network with $p$ parameters on arbitrary data distributions. With this result, we validate the law of robustness conjecture in prior work by Bubeck, Li and Nagaraj on two-layer neural networks with polynomial weights. We then extend our result to arbitrary interpolating approximators and prove a Lipschitzness lower bound $\Omega(n^{1/d})$ for robust interpolation. Our results demonstrate a two-fold law of robustness: a) we show the potential benefit of overparametrization for smooth data interpolation when $n=poly(d)$, and b) we disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=\exp(\omega(d))$.
Author Information
Yihan Wu (University of Maryland, College Park)
Heng Huang (University of Pittsburgh & JD Finance America Corporation)
Hongyang Zhang (University of Waterloo)
More from the Same Authors
-
2022 : Causal Balancing for Domain Generalization »
Xinyi Wang · Michael Saxon · Jiachen Li · Hongyang Zhang · Kun Zhang · William Wang -
2023 Poster: Tighter Analysis for ProxSkip »
Zhengmian Hu · Heng Huang -
2023 Poster: Understanding the Impact of Adversarial Robustness on Accuracy Disparity »
Yuzheng Hu · Fan Wu · Hongyang Zhang · Han Zhao -
2023 Poster: Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization »
Zhengmian Hu · Xidong Wu · Heng Huang -
2022 Poster: On the Convergence of Local Stochastic Compositional Gradient Descent with Momentum »
Hongchang Gao · Junyi Li · Heng Huang -
2022 Poster: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Spotlight: On the Convergence of Local Stochastic Compositional Gradient Descent with Momentum »
Hongchang Gao · Junyi Li · Heng Huang -
2022 Spotlight: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Poster: RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval »
Yihan Wu · Hongyang Zhang · Heng Huang -
2022 Poster: Detached Error Feedback for Distributed SGD with Random Sparsification »
An Xu · Heng Huang -
2022 Spotlight: Detached Error Feedback for Distributed SGD with Random Sparsification »
An Xu · Heng Huang -
2022 Spotlight: RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval »
Yihan Wu · Hongyang Zhang · Heng Huang -
2021 Poster: On the Random Conjugate Kernel and Neural Tangent Kernel »
Zhengmian Hu · Heng Huang -
2021 Spotlight: On the Random Conjugate Kernel and Neural Tangent Kernel »
Zhengmian Hu · Heng Huang -
2020 Poster: Momentum-Based Policy Gradient Methods »
Feihu Huang · Shangqian Gao · Jian Pei · Heng Huang -
2020 Poster: Adversarial Nonnegative Matrix Factorization »
lei luo · yanfu Zhang · Heng Huang -
2020 Poster: Sparse Shrunk Additive Models »
guodong liu · Hong Chen · Heng Huang -
2020 Poster: Can Stochastic Zeroth-Order Frank-Wolfe Method Converge Faster for Non-Convex Problems? »
Hongchang Gao · Heng Huang -
2020 Poster: Fast OSCAR and OWL Regression via Safe Screening Rules »
Runxue Bao · Bin Gu · Heng Huang -
2019 Poster: Demystifying Dropout »
Hongchang Gao · Jian Pei · Heng Huang -
2019 Oral: Demystifying Dropout »
Hongchang Gao · Jian Pei · Heng Huang -
2019 Poster: Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization »
Feihu Huang · Songcan Chen · Heng Huang -
2019 Oral: Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization »
Feihu Huang · Songcan Chen · Heng Huang -
2018 Poster: Faster Derivative-Free Stochastic Algorithm for Shared Memory Machines »
Bin Gu · Zhouyuan Huo · Cheng Deng · Heng Huang -
2018 Poster: Decoupled Parallel Backpropagation with Convergence Guarantee »
Zhouyuan Huo · Bin Gu · Qian Yang · Heng Huang -
2018 Oral: Decoupled Parallel Backpropagation with Convergence Guarantee »
Zhouyuan Huo · Bin Gu · Qian Yang · Heng Huang -
2018 Oral: Faster Derivative-Free Stochastic Algorithm for Shared Memory Machines »
Bin Gu · Zhouyuan Huo · Cheng Deng · Heng Huang