Timezone: »
Out-of-distribution (OOD) generalization, where the model needs to handle distribution shifts from training, is a major challenge of machine learning. Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances. This paper aims at generalizing CLIP to out-of-distribution test data on downstream tasks. We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on the unseen test data. To exploit the semantic relations between classes from the text modality, CLIPood introduces a new training objective, margin metric softmax (MMS), with class adaptive margins for fine-tuning. To incorporate both pre-trained zero-shot model and fine-tuned task-adaptive model, CLIPood leverages a new optimization strategy, Beta moving average (BMA), to maintain a temporal ensemble weighted by Beta distribution. Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
Author Information
Yang Shu (Tsinghua University)
Xingzhuo Guo (Tsinghua University)
Jialong Wu (Tsinghua University)
Ximei Wang (Tencent)
Jianmin Wang (Tsinghua University)
Mingsheng Long (Tsinghua University)
More from the Same Authors
-
2023 Poster: Estimating Heterogeneous Treatment Effects: Mutual Information Bounds and Learning Algorithms »
Xingzhuo Guo · Yuchen Zhang · Jianmin Wang · Mingsheng Long -
2023 Poster: Solving High-Dimensional PDEs with Latent Spectral Models »
Haixu Wu · Tengge Hu · huakun luo · Jianmin Wang · Mingsheng Long -
2022 Poster: Flowformer: Linearizing Transformers with Conservation Flows »
Haixu Wu · Jialong Wu · Jiehui Xu · Jianmin Wang · Mingsheng Long -
2022 Spotlight: Flowformer: Linearizing Transformers with Conservation Flows »
Haixu Wu · Jialong Wu · Jiehui Xu · Jianmin Wang · Mingsheng Long -
2021 Poster: LogME: Practical Assessment of Pre-trained Models for Transfer Learning »
Kaichao You · Yong Liu · Jianmin Wang · Mingsheng Long -
2021 Spotlight: LogME: Practical Assessment of Pre-trained Models for Transfer Learning »
Kaichao You · Yong Liu · Jianmin Wang · Mingsheng Long -
2021 Poster: Representation Subspace Distance for Domain Adaptation Regression »
Xinyang Chen · Sinan Wang · Jianmin Wang · Mingsheng Long -
2021 Spotlight: Representation Subspace Distance for Domain Adaptation Regression »
Xinyang Chen · Sinan Wang · Jianmin Wang · Mingsheng Long -
2021 Poster: Self-Tuning for Data-Efficient Deep Learning »
Ximei Wang · Jinghan Gao · Mingsheng Long · Jianmin Wang -
2021 Poster: Zoo-Tuning: Adaptive Transfer from A Zoo of Models »
Yang Shu · Zhi Kou · Zhangjie Cao · Jianmin Wang · Mingsheng Long -
2021 Spotlight: Self-Tuning for Data-Efficient Deep Learning »
Ximei Wang · Jinghan Gao · Mingsheng Long · Jianmin Wang -
2021 Spotlight: Zoo-Tuning: Adaptive Transfer from A Zoo of Models »
Yang Shu · Zhi Kou · Zhangjie Cao · Jianmin Wang · Mingsheng Long -
2020 Poster: Unsupervised Transfer Learning for Spatiotemporal Predictive Networks »
Zhiyu Yao · Yunbo Wang · Mingsheng Long · Jianmin Wang -
2019 Poster: Bridging Theory and Algorithm for Domain Adaptation »
Yuchen Zhang · Tianle Liu · Mingsheng Long · Michael Jordan -
2019 Oral: Bridging Theory and Algorithm for Domain Adaptation »
Yuchen Zhang · Tianle Liu · Mingsheng Long · Michael Jordan -
2019 Poster: Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers »
Hong Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2019 Poster: Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation »
Kaichao You · Ximei Wang · Mingsheng Long · Michael Jordan -
2019 Poster: Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation »
Xinyang Chen · Sinan Wang · Mingsheng Long · Jianmin Wang -
2019 Oral: Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation »
Kaichao You · Ximei Wang · Mingsheng Long · Michael Jordan -
2019 Oral: Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation »
Xinyang Chen · Sinan Wang · Mingsheng Long · Jianmin Wang -
2019 Oral: Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers »
Hong Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2018 Poster: PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning »
Yunbo Wang · Zhifeng Gao · Mingsheng Long · Jianmin Wang · Philip Yu -
2018 Oral: PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning »
Yunbo Wang · Zhifeng Gao · Mingsheng Long · Jianmin Wang · Philip Yu -
2017 Poster: Deep Transfer Learning with Joint Adaptation Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan -
2017 Talk: Deep Transfer Learning with Joint Adaptation Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan