Timezone: »
Poster
Regret Minimization and Convergence to Equilibria in General-sum Markov Games
Liad Erez · Tal Lancewicki · Uri Sherman · Tomer Koren · Yishay Mansour
An abundance of recent impossibility results establish that regret minimization in Markov games with adversarial opponents is both statistically and computationally intractable. Nevertheless, none of these results preclude the possibility of regret minimization under the assumption that all parties adopt the same learning procedure. In this work, we present the first (to our knowledge) algorithm for learning in general-sum Markov games that provides sublinear regret guarantees when executed by all agents. The bounds we obtain are for $\textit{swap regret}$, and thus, along the way, imply convergence to a $\textit{correlated}$ equilibrium. Our algorithm is decentralized, computationally efficient, and does not require any communication between agents. Our key observation is that online learning via policy optimization in Markov games essentially reduces to a form of $\textit{weighted}$ regret minimization, with $\textit{unknown}$ weights determined by the path length of the agents' policy sequence. Consequently, controlling the path length leads to weighted regret objectives for which sufficiently adaptive algorithms provide sublinear regret guarantees.
Author Information
Liad Erez (Tel Aviv University)
Tal Lancewicki (Tel-Aviv University)
Uri Sherman (Tel Aviv University)
Tomer Koren (Tel Aviv University and Google)
Yishay Mansour (Google and Tel Aviv University)
More from the Same Authors
-
2021 : Minimax Regret for Stochastic Shortest Path »
Alon Cohen · Yonathan Efroni · Yishay Mansour · Aviv Rosenberg -
2021 : Oracle-Efficient Regret Minimization in Factored MDPs with Unknown Structure »
Aviv Rosenberg · Yishay Mansour -
2021 : Learning Adversarial Markov Decision Processes with Delayed Feedback »
Tal Lancewicki · Aviv Rosenberg · Yishay Mansour -
2022 : Optimism in Face of a Context: Regret Guarantees for Stochastic Contextual MDP »
Orin Levy · Yishay Mansour -
2022 : Near-optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2023 Oral: Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice »
Yishay Mansour · Richard Nock · Robert C. Williamson -
2023 Poster: Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2023 Poster: Reinforcement Learning Can Be More Efficient with Multiple Rewards »
Christoph Dann · Yishay Mansour · Mehryar Mohri -
2023 Poster: Improved Regret for Efficient Online Reinforcement Learning with Linear Function Approximation »
Uri Sherman · Tomer Koren · Yishay Mansour -
2023 Poster: Concurrent Shuffle Differential Privacy Under Continual Observation »
Jay Tenenbaum · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2023 Poster: Efficient Rate Optimal Regret for Adversarial Contextual MDPs Using Online Function Approximation »
Orin Levy · Alon Cohen · Asaf Cassel · Yishay Mansour -
2023 Poster: Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice »
Yishay Mansour · Richard Nock · Robert C. Williamson -
2023 Poster: SGD with AdaGrad Stepsizes: Full Adaptivity with High Probability to Unknown Parameters, Unbounded Gradients and Affine Variance »
Amit Attia · Tomer Koren -
2023 Poster: Delay-Adapted Policy Optimization and Improved Regret for Adversarial MDP with Delayed Bandit Feedback »
Tal Lancewicki · Aviv Rosenberg · Dmitry Sotnikov -
2022 : Near-optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2022 Poster: Cooperative Online Learning in Stochastic and Adversarial MDPs »
Tal Lancewicki · Aviv Rosenberg · Yishay Mansour -
2022 Poster: FriendlyCore: Practical Differentially Private Aggregation »
Eliad Tsfadia · Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2022 Oral: Cooperative Online Learning in Stochastic and Adversarial MDPs »
Tal Lancewicki · Aviv Rosenberg · Yishay Mansour -
2022 Spotlight: FriendlyCore: Practical Differentially Private Aggregation »
Eliad Tsfadia · Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2021 Poster: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Oral: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Poster: Differentially-Private Clustering of Easy Instances »
Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer · Eliad Tsfadia -
2021 Spotlight: Differentially-Private Clustering of Easy Instances »
Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer · Eliad Tsfadia -
2021 Poster: Adversarial Dueling Bandits »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Spotlight: Adversarial Dueling Bandits »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Poster: Online Policy Gradient for Model Free Learning of Linear Quadratic Regulators with √T Regret »
Asaf Cassel · Tomer Koren -
2021 Poster: Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions »
Tal Lancewicki · Shahar Segal · Tomer Koren · Yishay Mansour -
2021 Spotlight: Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions »
Tal Lancewicki · Shahar Segal · Tomer Koren · Yishay Mansour -
2021 Spotlight: Online Policy Gradient for Model Free Learning of Linear Quadratic Regulators with √T Regret »
Asaf Cassel · Tomer Koren -
2021 Poster: Dueling Convex Optimization »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Spotlight: Dueling Convex Optimization »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2020 Poster: Near-optimal Regret Bounds for Stochastic Shortest Path »
Aviv Rosenberg · Alon Cohen · Yishay Mansour · Haim Kaplan -
2019 Poster: Adversarial Online Learning with noise »
Alon Resler · Yishay Mansour -
2019 Poster: Online Convex Optimization in Adversarial Markov Decision Processes »
Aviv Rosenberg · Yishay Mansour -
2019 Poster: Learning Linear-Quadratic Regulators Efficiently with only $\sqrt{T}$ Regret »
Alon Cohen · Tomer Koren · Yishay Mansour -
2019 Poster: Differentially Private Learning of Geometric Concepts »
Haim Kaplan · Yishay Mansour · Yossi Matias · Uri Stemmer -
2019 Oral: Learning Linear-Quadratic Regulators Efficiently with only $\sqrt{T}$ Regret »
Alon Cohen · Tomer Koren · Yishay Mansour -
2019 Oral: Adversarial Online Learning with noise »
Alon Resler · Yishay Mansour -
2019 Oral: Differentially Private Learning of Geometric Concepts »
Haim Kaplan · Yishay Mansour · Yossi Matias · Uri Stemmer -
2019 Oral: Online Convex Optimization in Adversarial Markov Decision Processes »
Aviv Rosenberg · Yishay Mansour