Timezone: »
Data-free meta-learning (DFML) aims to enable efficient learning of new tasks by meta-learning from a collection of pre-trained models without access to the training data. Existing DFML work can only meta-learn from (i) white-box and (ii) small-scale pre-trained models (iii) with the same architecture, neglecting the more practical setting where the users only have inference access to the APIs with arbitrary model architectures and model scale inside. To solve this issue, we propose a Bi-level Data-free Meta Knowledge Distillation (BiDf-MKD) framework to transfer more general meta knowledge from a collection of black-box APIs to one single meta model. Specifically, by just querying APIs, we inverse each API to recover its training data via a zero-order gradient estimator and then perform meta-learning via a novel bi-level meta knowledge distillation structure, in which we design a boundary query set recovery technique to recover a more informative query set near the decision boundary. In addition, to encourage better generalization within the setting of limited API budgets, we propose task memory replay to diversify the underlying task distribution by covering more interpolated tasks. Extensive experiments in various real-world scenarios show the superior performance of our BiDf-MKD framework.
Author Information
Zixuan Hu (Tsinghua University)
Li Shen (JD Explore Academy)
Zhenyi Wang (University at Buffalo)
Baoyuan Wu (The Chinese University of Hong Kong, Shenzhen)
Chun Yuan (Graduate School at Shenzhen,Tsinghua University)
Dacheng Tao
More from the Same Authors
-
2023 : Improving Adversarial Training for Multiple Perturbations through the Lens of Uniform Stability »
Jiancong Xiao · Zeyu Qin · Yanbo Fan · Baoyuan Wu · Jue Wang · Zhi-Quan Luo -
2023 : Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning »
Guozheng Ma · · Haoyu Wang · Lu Li · Zilin Wang · Zhen Wang · Li Shen · Xueqian Wang · Dacheng Tao -
2023 Oral: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Oral: Tilted Sparse Additive Models »
Yingjie Wang · Hong Chen · Weifeng Liu · Fengxiang He · Tieliang Gong · YouCheng Fu · Dacheng Tao -
2023 Poster: UPop: Unified and Progressive Pruning for Compressing Vision-Language Transformers »
Dachuan Shi · Chaofan Tao · Ying Jin · Zhendong Yang · Chun Yuan · Jiaqi Wang -
2023 Poster: Structured Cooperative Learning with Graphical Model Priors »
Shuangtong Li · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2023 Poster: Tilted Sparse Additive Models »
Yingjie Wang · Hong Chen · Weifeng Liu · Fengxiang He · Tieliang Gong · YouCheng Fu · Dacheng Tao -
2023 Poster: Are Large Kernels Better Teachers than Transformers for ConvNets? »
Tianjin Huang · Lu Yin · Zhenyu Zhang · Li Shen · Meng Fang · Mykola Pechenizkiy · Zhangyang “Atlas” Wang · Shiwei Liu -
2023 Poster: Decentralized SGD and Average-direction SAM are Asymptotically Equivalent »
Tongtian Zhu · Fengxiang He · Kaixuan Chen · Mingli Song · Dacheng Tao -
2023 Poster: Improving the Model Consistency of Decentralized Federated Learning »
Yifan Shi · Li Shen · Kang Wei · Yan Sun · Bo Yuan · Xueqian Wang · Dacheng Tao -
2023 Poster: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Poster: CoCo: A Coupled Contrastive Framework for Unsupervised Domain Adaptive Graph Classification »
Nan Yin · Li Shen · Mengzhu Wang · Long Lan · Zeyu Ma · Chong Chen · Xian-Sheng Hua · Xiao Luo -
2022 : Paper 12: SafeRL-Kit: Evaluating Efficient Reinforcement Learning Methods for Safe Autonomous Driving »
· Li Shen · Bo Yuan · Xueqian Wang -
2022 Poster: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2022 Spotlight: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2022 Poster: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Poster: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Spotlight: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Spotlight: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Poster: Improving Task-free Continual Learning by Distributionally Robust Memory Evolution »
Zhenyi Wang · Li Shen · Le Fang · Qiuling Suo · Tiehang Duan · Mingchen Gao -
2022 Poster: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Poster: Topology-aware Generalization of Decentralized SGD »
Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao -
2022 Spotlight: Topology-aware Generalization of Decentralized SGD »
Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao -
2022 Spotlight: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: Improving Task-free Continual Learning by Distributionally Robust Memory Evolution »
Zhenyi Wang · Li Shen · Le Fang · Qiuling Suo · Tiehang Duan · Mingchen Gao -
2020 Poster: Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks »
Zhishuai Guo · Mingrui Liu · Zhuoning Yuan · Li Shen · Wei Liu · Tianbao Yang -
2018 Poster: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2018 Oral: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2017 Poster: Beyond Filters: Compact Feature Map for Portable Deep Model »
Yunhe Wang · Chang Xu · Chao Xu · Dacheng Tao -
2017 Talk: Beyond Filters: Compact Feature Map for Portable Deep Model »
Yunhe Wang · Chang Xu · Chao Xu · Dacheng Tao -
2017 Poster: Algorithmic Stability and Hypothesis Complexity »
Tongliang Liu · Gábor Lugosi · Gergely Neu · Dacheng Tao -
2017 Talk: Algorithmic Stability and Hypothesis Complexity »
Tongliang Liu · Gábor Lugosi · Gergely Neu · Dacheng Tao -
2017 Poster: GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization »
Li Shen · Wei Liu · Ganzhao Yuan · Shiqian Ma -
2017 Talk: GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization »
Li Shen · Wei Liu · Ganzhao Yuan · Shiqian Ma