Timezone: »
It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in training machine learning models. This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem, whose goal is to recover a low-rank ground-truth matrix from near-isotropic linear measurements. It is shown that GD with small initialization behaves similarly to the greedy low-rank learning heuristics and follows an incremental learning procedure: GD sequentially learns solutions with increasing ranks until it recovers the ground truth matrix. Compared to existing works which only analyze the first learning phase for rank-1 solutions, our result provides characterizations for the whole learning process. Moreover, besides the over-parameterized regime that many prior works focused on, our analysis of the incremental learning procedure also applies to the under-parameterized regime. Finally, we conduct numerical experiments to confirm our theoretical findings.
Author Information
Jikai Jin (Peking University)
Zhiyuan Li (Computer Science Department, Stanford University)
Kaifeng Lyu (Princeton University)
Simon Du (University of Washington)
Jason Lee (Princeton University)
More from the Same Authors
-
2021 : Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Jean Tarbouriech · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2023 : Breaking the Curse of Multiagents in a Large State Space: RL in Markov Games with Independent Linear Function Approximation »
Qiwen Cui · Kaiqing Zhang · Simon Du -
2023 : The Marginal Value of Momentum for Small Learning Rate SGD »
Runzhe Wang · Sadhika Malladi · Tianhao Wang · Kaifeng Lyu · Zhiyuan Li -
2023 : Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron »
Weihang Xu · Simon Du -
2023 : Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer »
Yuandong Tian · Yiping Wang · Beidi Chen · Simon Du -
2023 : Breaking the Curse of Multiagents in a Large State Space: RL in Markov Games with Independent Linear Function Approximation »
Qiwen Cui · Kaiqing Zhang · Simon Du -
2023 : LabelBench: A Comprehensive Framework for Benchmarking Label-Efficient Learning »
Jifan Zhang · Yifang Chen · Gregory Canal · Stephen Mussmann · Yinglun Zhu · Simon Du · Kevin Jamieson · Robert Nowak -
2023 : Teaching Arithmetic to Small Transformers »
Nayoung Lee · Kartik Sreenivasan · Jason Lee · Kangwook Lee · Dimitris Papailiopoulos -
2023 : Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training »
Hong Liu · Zhiyuan Li · David Hall · Percy Liang · Tengyu Ma -
2023 : Scaling In-Context Demonstrations with Structured Attention »
Tianle Cai · Kaixuan Huang · Jason Lee · Mengdi Wang · Danqi Chen -
2023 : Fine-Tuning Language Models with Just Forward Passes »
Sadhika Malladi · Tianyu Gao · Eshaan Nichani · Jason Lee · Danqi Chen · Sanjeev Arora -
2023 : Reward Collapse in Aligning Large Language Models: A Prompt-Aware Approach to Preference Rankings »
Ziang Song · Tianle Cai · Jason Lee · Weijie Su -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 : How to Query Human Feedback Efficiently in RL? »
Wenhao Zhan · Masatoshi Uehara · Wen Sun · Jason Lee -
2023 : 🎤 Fine-Tuning Language Models with Just Forward Passes »
Sadhika Malladi · Tianyu Gao · Eshaan Nichani · Alex Damian · Jason Lee · Danqi Chen · Sanjeev Arora -
2023 : How to Query Human Feedback Efficiently in RL? »
Wenhao Zhan · Masatoshi Uehara · Wen Sun · Jason Lee -
2023 : Contributed talks 2 »
Simon Du · Wei Huang · Yuandong Tian -
2023 Oral: Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models »
Hong Liu · Sang Michael Xie · Zhiyuan Li · Tengyu Ma -
2023 Poster: Efficient displacement convex optimization with particle gradient descent »
Hadi Daneshmand · Jason Lee · Chi Jin -
2023 Poster: On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness »
Haotian Ye · Xiaoyu Chen · Liwei Wang · Simon Du -
2023 Poster: Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models »
Hong Liu · Sang Michael Xie · Zhiyuan Li · Tengyu Ma -
2023 Poster: Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning »
Yulai Zhao · Zhuoran Yang · Zhaoran Wang · Jason Lee -
2023 Poster: Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings »
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun -
2023 Oral: On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness »
Haotian Ye · Xiaoyu Chen · Liwei Wang · Simon Du -
2023 Poster: Looped Transformers as Programmable Computers »
Angeliki Giannou · Shashank Rajput · Jy-yong Sohn · Kangwook Lee · Jason Lee · Dimitris Papailiopoulos -
2023 Poster: Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments »
Runlong Zhou · Zhang Zihan · Simon Du -
2023 Poster: Improved Active Multi-Task Representation Learning via Lasso »
Yiping Wang · Yifang Chen · Kevin Jamieson · Simon Du -
2023 Poster: Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes »
Runlong Zhou · Ruosong Wang · Simon Du -
2022 : On the SDEs and Scaling Rules for Adaptive Gradient Algorithms »
Sadhika Malladi · Kaifeng Lyu · Abhishek Panigrahi · Sanjeev Arora -
2022 Poster: First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach »
Andrew Wagenmaker · Yifang Chen · Max Simchowitz · Simon Du · Kevin Jamieson -
2022 Poster: Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes »
Andrew Wagenmaker · Yifang Chen · Max Simchowitz · Simon Du · Kevin Jamieson -
2022 Poster: Near-Optimal Algorithms for Autonomous Exploration and Multi-Goal Stochastic Shortest Path »
Haoyuan Cai · Tengyu Ma · Simon Du -
2022 Spotlight: Near-Optimal Algorithms for Autonomous Exploration and Multi-Goal Stochastic Shortest Path »
Haoyuan Cai · Tengyu Ma · Simon Du -
2022 Spotlight: Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes »
Andrew Wagenmaker · Yifang Chen · Max Simchowitz · Simon Du · Kevin Jamieson -
2022 Oral: First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach »
Andrew Wagenmaker · Yifang Chen · Max Simchowitz · Simon Du · Kevin Jamieson -
2022 Poster: Active Multi-Task Representation Learning »
Yifang Chen · Kevin Jamieson · Simon Du -
2022 Poster: Denoised MDPs: Learning World Models Better Than the World Itself »
Tongzhou Wang · Simon Du · Antonio Torralba · Phillip Isola · Amy Zhang · Yuandong Tian -
2022 Spotlight: Denoised MDPs: Learning World Models Better Than the World Itself »
Tongzhou Wang · Simon Du · Antonio Torralba · Phillip Isola · Amy Zhang · Yuandong Tian -
2022 Spotlight: Active Multi-Task Representation Learning »
Yifang Chen · Kevin Jamieson · Simon Du -
2022 Poster: Nearly Optimal Policy Optimization with Stable at Any Time Guarantee »
Tianhao Wu · Yunchang Yang · Han Zhong · Liwei Wang · Simon Du · Jiantao Jiao -
2022 Spotlight: Nearly Optimal Policy Optimization with Stable at Any Time Guarantee »
Tianhao Wu · Yunchang Yang · Han Zhong · Liwei Wang · Simon Du · Jiantao Jiao -
2021 Workshop: Workshop on Reinforcement Learning Theory »
Shipra Agrawal · Simon Du · Niao He · Csaba Szepesvari · Lin Yang -
2021 Poster: Improved Corruption Robust Algorithms for Episodic Reinforcement Learning »
Yifang Chen · Simon Du · Kevin Jamieson -
2021 Spotlight: Improved Corruption Robust Algorithms for Episodic Reinforcement Learning »
Yifang Chen · Simon Du · Kevin Jamieson -
2021 Poster: Near Optimal Reward-Free Reinforcement Learning »
Zhang Zihan · Simon Du · Xiangyang Ji -
2021 Poster: On Reinforcement Learning with Adversarial Corruption and Its Application to Block MDP »
Tianhao Wu · Yunchang Yang · Simon Du · Liwei Wang -
2021 Poster: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Spotlight: On Reinforcement Learning with Adversarial Corruption and Its Application to Block MDP »
Tianhao Wu · Yunchang Yang · Simon Du · Liwei Wang -
2021 Oral: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Oral: Near Optimal Reward-Free Reinforcement Learning »
Zhang Zihan · Simon Du · Xiangyang Ji