Timezone: »
The Internet contains a wealth of knowledge---from the birthdays of historical figures to tutorials on how to code---all of which may be learned by language models. However, while certain pieces of information are ubiquitous on the web, others appear extremely rarely. In this paper, we study the relationship between the knowledge memorized by large language models and the information in pre-training datasets scraped from the web. In particular, we show that a language model's ability to answer a fact-based question relates to how many documents associated with that question were seen during pre-training. We identify these relevant documents by entity linking pre-training datasets and counting documents that contain the same entities as a given question-answer pair. Our results demonstrate strong correlational and causal relationships between accuracy and relevant document count for numerous question answering datasets (e.g., TriviaQA), pre-training corpora (e.g., ROOTS), and model sizes (e.g., 176B parameters). Moreover, while larger models are better at learning long-tail knowledge, we estimate that today's models must be scaled by many orders of magnitude to reach competitive QA performance on questions with little support in the pre-training data. Finally, we show that retrieval-augmentation can reduce the dependence on relevant pre-training information, presenting a promising approach for capturing the long-tail.
Author Information
Nikhil Kandpal (University of North Carolina, Chapel Hill)
Haikang Deng (Department of Computer Science, University of North Carolina at Chapel Hill)
Adam Roberts (Google DeepMind)
Eric Wallace (U.C. Berkeley)
Colin Raffel (Google Brain)
More from the Same Authors
-
2023 : Backdoor Attacks for In-Context Learning with Language Models »
Nikhil Kandpal · Matthew Jagielski · Florian Tramer · Nicholas Carlini -
2023 Poster: Poisoning Language Models During Instruction Tuning »
Alexander Wan · Eric Wallace · Sheng Shen · Dan Klein -
2023 Poster: Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models »
Nikhil Kandpal · Brian Lester · Mohammed Muqeeth · Anisha Mascarenhas · Monty Evans · Vishal Baskaran · Tenghao Huang · Haokun Liu · Colin Raffel -
2023 Poster: The Flan Collection: Designing Data and Methods for Effective Instruction Tuning »
Shayne Longpre · Le Hou · Tu Vu · Albert Webson · Hyung Won Chung · Yi Tay · Denny Zhou · Quoc Le · Barret Zoph · Jason Wei · Adam Roberts -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 Poster: Deduplicating Training Data Mitigates Privacy Risks in Language Models »
Nikhil Kandpal · Eric Wallace · Colin Raffel -
2022 Spotlight: Deduplicating Training Data Mitigates Privacy Risks in Language Models »
Nikhil Kandpal · Eric Wallace · Colin Raffel -
2022 Poster: What Language Model Architecture and Pretraining Objective Works Best for Zero-Shot Generalization? »
Thomas Wang · Adam Roberts · Daniel Hesslow · Teven Le Scao · Hyung Won Chung · Iz Beltagy · Julien Launay · Colin Raffel -
2022 Spotlight: What Language Model Architecture and Pretraining Objective Works Best for Zero-Shot Generalization? »
Thomas Wang · Adam Roberts · Daniel Hesslow · Teven Le Scao · Hyung Won Chung · Iz Beltagy · Julien Launay · Colin Raffel -
2021 Poster: Calibrate Before Use: Improving Few-shot Performance of Language Models »
Tony Z. Zhao · Eric Wallace · Shi Feng · Dan Klein · Sameer Singh -
2021 Oral: Calibrate Before Use: Improving Few-shot Performance of Language Models »
Tony Z. Zhao · Eric Wallace · Shi Feng · Dan Klein · Sameer Singh -
2020 Poster: Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers »
Zhuohan Li · Eric Wallace · Sheng Shen · Kevin Lin · Kurt Keutzer · Dan Klein · Joseph Gonzalez -
2019 Poster: Learning to Groove with Inverse Sequence Transformations »
Jon Gillick · Adam Roberts · Jesse Engel · Douglas Eck · David Bamman -
2019 Oral: Learning to Groove with Inverse Sequence Transformations »
Jon Gillick · Adam Roberts · Jesse Engel · Douglas Eck · David Bamman -
2018 Poster: A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music »
Adam Roberts · Jesse Engel · Colin Raffel · Curtis Hawthorne · Douglas Eck -
2018 Oral: A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music »
Adam Roberts · Jesse Engel · Colin Raffel · Curtis Hawthorne · Douglas Eck -
2017 Poster: Online and Linear-Time Attention by Enforcing Monotonic Alignments »
Colin Raffel · Thang Luong · Peter Liu · Ron Weiss · Douglas Eck -
2017 Poster: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi -
2017 Talk: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi -
2017 Talk: Online and Linear-Time Attention by Enforcing Monotonic Alignments »
Colin Raffel · Thang Luong · Peter Liu · Ron Weiss · Douglas Eck