Timezone: »
Author Information
Chenlu Ye (The Hong Kong University of Science and Technology)
I am now a Ph.D.student who has strong interest in machine learning, especially machine learning theory.
Wei Xiong (The Hong Kong University of Science and Technology)
Quanquan Gu (University of California, Los Angeles)
Tong Zhang (HKUST)

Tong Zhang is a professor of Computer Science and Mathematics at the Hong Kong University of Science and Technology. His research interests are machine learning, big data and their applications. He obtained a BA in Mathematics and Computer Science from Cornell University, and a PhD in Computer Science from Stanford University. Before joining HKUST, Tong Zhang was a professor at Rutgers University, and worked previously at IBM, Yahoo as research scientists, Baidu as the director of Big Data Lab, and Tencent as the founding director of AI Lab. Tong Zhang was an ASA fellow and IMS fellow, and has served as the chair or area-chair in major machine learning conferences such as NIPS, ICML, and COLT, and has served as associate editors in top machine learning journals such as PAMI, JMLR, and Machine Learning Journal.
More from the Same Authors
-
2021 : Benign Overfitting in Adversarially Robust Linear Classification »
Jinghui Chen · Yuan Cao · Yuan Cao · Quanquan Gu -
2021 : Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures »
Yuan Cao · Yuan Cao · Quanquan Gu · Mikhail Belkin -
2021 : Nearly Minimax Optimal Regret for Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation »
Yue Wu · Dongruo Zhou · Quanquan Gu -
2021 : Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function Approximation »
Jiafan He · Dongruo Zhou · Quanquan Gu -
2021 : Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs »
Jiafan He · Dongruo Zhou · Quanquan Gu -
2021 : Almost Optimal Algorithms for Two-player Markov Games with Linear Function Approximation »
Zixiang Chen · Dongruo Zhou · Quanquan Gu -
2021 : Efficient Exploration by HyperDQN in Deep Reinforcement Learning »
Ziniu Li · Yingru Li · Hao Liang · Tong Zhang -
2022 : The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2023 : Robust Learning with Progressive Data Expansion Against Spurious Correlation »
Yihe Deng · Yu Yang · Baharan Mirzasoleiman · Quanquan Gu -
2023 : DiffMol: 3D Structured Molecule Generation with Discrete Denoising Diffusion Probabilistic Models »
Weitong Zhang · Xiaoyun Wang · Justin Smith · Joe Eaton · Brad Rees · Quanquan Gu -
2023 : Borda Regret Minimization for Generalized Linear Dueling Bandits »
Yue Wu · Tao Jin · Qiwei Di · Hao Lou · Farzad Farnoud · Quanquan Gu -
2023 Poster: DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design »
Jiaqi Guan · Xiangxin Zhou · Yuwei Yang · Yu Bao · Jian Peng · Jianzhu Ma · Qiang Liu · Liang Wang · Quanquan Gu -
2023 Poster: Beyond Uniform Lipschitz Condition in Differentially Private Optimization »
Rudrajit Das · Satyen Kale · Zheng Xu · Tong Zhang · Sujay Sanghavi -
2023 Poster: What is Essential for Unseen Goal Generalization of Offline Goal-conditioned RL? »
Rui Yang · Yong LIN · Xiaoteng Ma · Hao Hu · Chongjie Zhang · Tong Zhang -
2023 Poster: Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision Processes »
Jiafan He · Heyang Zhao · Dongruo Zhou · Quanquan Gu -
2023 Poster: Cooperative Multi-Agent Reinforcement Learning: Asynchronous Communication and Linear Function Approximation »
Yifei Min · Jiafan He · Tianhao Wang · Quanquan Gu -
2023 Poster: Learning in POMDPs is Sample-Efficient with Hindsight Observability »
Jonathan Lee · Alekh Agarwal · Christoph Dann · Tong Zhang -
2023 Poster: Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron »
Jingfeng Wu · Difan Zou · Zixiang Chen · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2023 Poster: Benign Overfitting in Two-layer ReLU Convolutional Neural Networks »
Yiwen Kou · Zixiang Chen · Yuanzhou Chen · Quanquan Gu -
2023 Poster: Generalized Polyak Step Size for First Order Optimization with Momentum »
Xiaoyu Wang · Mikael Johansson · Tong Zhang -
2023 Poster: Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization »
Chris Junchi Li · Huizhuo Yuan · Gauthier Gidel · Quanquan Gu · Michael Jordan -
2023 Oral: Structure-informed Language Models Are Protein Designers »
Zaixiang Zheng · Yifan Deng · Dongyu Xue · Yi Zhou · Fei YE · Quanquan Gu -
2023 Poster: Personalized Federated Learning under Mixture of Distributions »
Yue Wu · Shuaicheng Zhang · Wenchao Yu · Yanchi Liu · Quanquan Gu · Dawei Zhou · Haifeng Chen · Wei Cheng -
2023 Poster: Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources »
Chengshuai Shi · Wei Xiong · Cong Shen · Jing Yang -
2023 Poster: Optimal Online Generalized Linear Regression with Stochastic Noise and Its Application to Heteroscedastic Bandits »
Heyang Zhao · Dongruo Zhou · Jiafan He · Quanquan Gu -
2023 Poster: On the Convergence of Federated Averaging with Cyclic Client Participation »
Yae Jee Cho · PRANAY SHARMA · Gauri Joshi · Zheng Xu · Satyen Kale · Tong Zhang -
2023 Poster: Structure-informed Language Models Are Protein Designers »
Zaixiang Zheng · Yifan Deng · Dongyu Xue · Yi Zhou · Fei YE · Quanquan Gu -
2023 Poster: The Benefits of Mixup for Feature Learning »
Difan Zou · Yuan Cao · Yuanzhi Li · Quanquan Gu -
2023 Poster: Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs »
Junkai Zhang · Weitong Zhang · Quanquan Gu -
2023 Poster: Weakly Supervised Disentangled Generative Causal Representation Learning »
Xinwei Shen · Furui Liu · Hanze Dong · Qing Lian · Zhitang Chen · Tong Zhang -
2023 Poster: Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic Shortest Path »
Qiwei Di · Jiafan He · Dongruo Zhou · Quanquan Gu -
2023 Poster: On the Interplay Between Misspecification and Sub-optimality Gap in Linear Contextual Bandits »
Weitong Zhang · Jiafan He · Zhiyuan Fan · Quanquan Gu -
2022 Poster: A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games »
Wei Xiong · Han Zhong · Chengshuai Shi · Cong Shen · Tong Zhang -
2022 Poster: Learning Stochastic Shortest Path with Linear Function Approximation »
Yifei Min · Jiafan He · Tianhao Wang · Quanquan Gu -
2022 Poster: Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets »
Han Zhong · Wei Xiong · Jiyuan Tan · Liwei Wang · Tong Zhang · Zhaoran Wang · Zhuoran Yang -
2022 Spotlight: Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets »
Han Zhong · Wei Xiong · Jiyuan Tan · Liwei Wang · Tong Zhang · Zhaoran Wang · Zhuoran Yang -
2022 Spotlight: Learning Stochastic Shortest Path with Linear Function Approximation »
Yifei Min · Jiafan He · Tianhao Wang · Quanquan Gu -
2022 Spotlight: A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games »
Wei Xiong · Han Zhong · Chengshuai Shi · Cong Shen · Tong Zhang -
2022 Poster: Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Poster: On the Sample Complexity of Learning Infinite-horizon Discounted Linear Kernel MDPs »
Yuanzhou Chen · Jiafan He · Quanquan Gu -
2022 Poster: Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint »
Hao Liu · Minshuo Chen · Siawpeng Er · Wenjing Liao · Tong Zhang · Tuo Zhao -
2022 Oral: Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Spotlight: On the Sample Complexity of Learning Infinite-horizon Discounted Linear Kernel MDPs »
Yuanzhou Chen · Jiafan He · Quanquan Gu -
2022 Spotlight: Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint »
Hao Liu · Minshuo Chen · Siawpeng Er · Wenjing Liao · Tong Zhang · Tuo Zhao -
2022 Poster: Dimension-free Complexity Bounds for High-order Nonconvex Finite-sum Optimization »
Dongruo Zhou · Quanquan Gu -
2022 Poster: A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization »
Renzhe Xu · Xingxuan Zhang · Zheyan Shen · Tong Zhang · Peng Cui -
2022 Poster: Sparse Invariant Risk Minimization »
Xiao Zhou · Yong LIN · Weizhong Zhang · Tong Zhang -
2022 Poster: Model Agnostic Sample Reweighting for Out-of-Distribution Learning »
Xiao Zhou · Yong LIN · Renjie Pi · Weizhong Zhang · Renzhe Xu · Peng Cui · Tong Zhang -
2022 Poster: Probabilistic Bilevel Coreset Selection »
Xiao Zhou · Renjie Pi · Weizhong Zhang · Yong LIN · Zonghao Chen · Tong Zhang -
2022 Spotlight: A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization »
Renzhe Xu · Xingxuan Zhang · Zheyan Shen · Tong Zhang · Peng Cui -
2022 Spotlight: Probabilistic Bilevel Coreset Selection »
Xiao Zhou · Renjie Pi · Weizhong Zhang · Yong LIN · Zonghao Chen · Tong Zhang -
2022 Spotlight: Dimension-free Complexity Bounds for High-order Nonconvex Finite-sum Optimization »
Dongruo Zhou · Quanquan Gu -
2022 Spotlight: Model Agnostic Sample Reweighting for Out-of-Distribution Learning »
Xiao Zhou · Yong LIN · Renjie Pi · Weizhong Zhang · Renzhe Xu · Peng Cui · Tong Zhang -
2022 Spotlight: Sparse Invariant Risk Minimization »
Xiao Zhou · Yong LIN · Weizhong Zhang · Tong Zhang -
2021 : Stochastic Variance-Reduced High-order Optimization for Nonconvex Optimization »
Quanquan Gu -
2021 Workshop: Over-parameterization: Pitfalls and Opportunities »
Yasaman Bahri · Quanquan Gu · Amin Karbasi · Hanie Sedghi -
2021 Poster: On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients »
Difan Zou · Quanquan Gu -
2021 Spotlight: On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients »
Difan Zou · Quanquan Gu -
2021 Poster: Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits »
Tianyuan Jin · Jing Tang · Pan Xu · Keke Huang · Xiaokui Xiao · Quanquan Gu -
2021 Poster: MOTS: Minimax Optimal Thompson Sampling »
Tianyuan Jin · Pan Xu · Jieming Shi · Xiaokui Xiao · Quanquan Gu -
2021 Poster: Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping »
Dongruo Zhou · Jiafan He · Quanquan Gu -
2021 Poster: Logarithmic Regret for Reinforcement Learning with Linear Function Approximation »
Jiafan He · Dongruo Zhou · Quanquan Gu -
2021 Spotlight: Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits »
Tianyuan Jin · Jing Tang · Pan Xu · Keke Huang · Xiaokui Xiao · Quanquan Gu -
2021 Spotlight: Logarithmic Regret for Reinforcement Learning with Linear Function Approximation »
Jiafan He · Dongruo Zhou · Quanquan Gu -
2021 Spotlight: MOTS: Minimax Optimal Thompson Sampling »
Tianyuan Jin · Pan Xu · Jieming Shi · Xiaokui Xiao · Quanquan Gu -
2021 Spotlight: Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping »
Dongruo Zhou · Jiafan He · Quanquan Gu -
2021 Poster: Provable Robustness of Adversarial Training for Learning Halfspaces with Noise »
Difan Zou · Spencer Frei · Quanquan Gu -
2021 Poster: Agnostic Learning of Halfspaces with Gradient Descent via Soft Margins »
Spencer Frei · Yuan Cao · Quanquan Gu -
2021 Poster: Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise »
Spencer Frei · Yuan Cao · Quanquan Gu -
2021 Spotlight: Provable Robustness of Adversarial Training for Learning Halfspaces with Noise »
Difan Zou · Spencer Frei · Quanquan Gu -
2021 Oral: Agnostic Learning of Halfspaces with Gradient Descent via Soft Margins »
Spencer Frei · Yuan Cao · Quanquan Gu -
2021 Spotlight: Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise »
Spencer Frei · Yuan Cao · Quanquan Gu -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2020 Poster: A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation »
Pan Xu · Quanquan Gu -
2020 Poster: Optimization Theory for ReLU Neural Networks Trained with Normalization Layers »
Yonatan Dukler · Quanquan Gu · Guido Montufar -
2020 Poster: Neural Contextual Bandits with UCB-based Exploration »
Dongruo Zhou · Lihong Li · Quanquan Gu -
2020 Poster: Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization »
Rie Johnson · Tong Zhang -
2019 Poster: $\texttt{DoubleSqueeze}$: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression »
Hanlin Tang · Chen Yu · Xiangru Lian · Tong Zhang · Ji Liu -
2019 Oral: $\texttt{DoubleSqueeze}$: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression »
Hanlin Tang · Chen Yu · Xiangru Lian · Tong Zhang · Ji Liu -
2019 Poster: On the Convergence and Robustness of Adversarial Training »
Yisen Wang · Xingjun Ma · James Bailey · Jinfeng Yi · Bowen Zhou · Quanquan Gu -
2019 Oral: On the Convergence and Robustness of Adversarial Training »
Yisen Wang · Xingjun Ma · James Bailey · Jinfeng Yi · Bowen Zhou · Quanquan Gu -
2019 Poster: Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI »
Lei Han · Peng Sun · Yali Du · Jiechao Xiong · Qing Wang · Xinghai Sun · Han Liu · Tong Zhang -
2019 Poster: Lower Bounds for Smooth Nonconvex Finite-Sum Optimization »
Dongruo Zhou · Quanquan Gu -
2019 Oral: Lower Bounds for Smooth Nonconvex Finite-Sum Optimization »
Dongruo Zhou · Quanquan Gu -
2019 Oral: Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI »
Lei Han · Peng Sun · Yali Du · Jiechao Xiong · Qing Wang · Xinghai Sun · Han Liu · Tong Zhang -
2019 Tutorial: Causal Inference and Stable Learning »
Tong Zhang · Peng Cui -
2018 Poster: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2018 Poster: Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow »
Xiao Zhang · Simon Du · Quanquan Gu -
2018 Poster: Candidates vs. Noises Estimation for Large Multi-Class Classification Problem »
Lei Han · Yiheng Huang · Tong Zhang -
2018 Poster: Continuous and Discrete-time Accelerated Stochastic Mirror Descent for Strongly Convex Functions »
Pan Xu · Tianhao Wang · Quanquan Gu -
2018 Poster: Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents »
Kaiqing Zhang · Zhuoran Yang · Han Liu · Tong Zhang · Tamer Basar -
2018 Oral: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2018 Oral: Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents »
Kaiqing Zhang · Zhuoran Yang · Han Liu · Tong Zhang · Tamer Basar -
2018 Oral: Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow »
Xiao Zhang · Simon Du · Quanquan Gu -
2018 Oral: Continuous and Discrete-time Accelerated Stochastic Mirror Descent for Strongly Convex Functions »
Pan Xu · Tianhao Wang · Quanquan Gu -
2018 Oral: Candidates vs. Noises Estimation for Large Multi-Class Classification Problem »
Lei Han · Yiheng Huang · Tong Zhang -
2018 Poster: Graphical Nonconvex Optimization via an Adaptive Convex Relaxation »
Qiang Sun · Kean Ming Tan · Han Liu · Tong Zhang -
2018 Poster: Composite Functional Gradient Learning of Generative Adversarial Models »
Rie Johnson · Tong Zhang -
2018 Poster: A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery »
Xiao Zhang · Lingxiao Wang · Yaodong Yu · Quanquan Gu -
2018 Poster: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Poster: Stochastic Variance-Reduced Hamilton Monte Carlo Methods »
Difan Zou · Pan Xu · Quanquan Gu -
2018 Oral: Graphical Nonconvex Optimization via an Adaptive Convex Relaxation »
Qiang Sun · Kean Ming Tan · Han Liu · Tong Zhang -
2018 Oral: Stochastic Variance-Reduced Hamilton Monte Carlo Methods »
Difan Zou · Pan Xu · Quanquan Gu -
2018 Oral: Composite Functional Gradient Learning of Generative Adversarial Models »
Rie Johnson · Tong Zhang -
2018 Oral: A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery »
Xiao Zhang · Lingxiao Wang · Yaodong Yu · Quanquan Gu -
2018 Oral: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Poster: Safe Element Screening for Submodular Function Minimization »
Weizhong Zhang · Bin Hong · Lin Ma · Wei Liu · Tong Zhang -
2018 Poster: End-to-end Active Object Tracking via Reinforcement Learning »
Wenhan Luo · Peng Sun · Fangwei Zhong · Wei Liu · Tong Zhang · Yizhou Wang -
2018 Poster: Stochastic Variance-Reduced Cubic Regularized Newton Method »
Dongruo Zhou · Pan Xu · Quanquan Gu -
2018 Poster: Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization »
Jinghui Chen · Pan Xu · Lingxiao Wang · Jian Ma · Quanquan Gu -
2018 Oral: Stochastic Variance-Reduced Cubic Regularized Newton Method »
Dongruo Zhou · Pan Xu · Quanquan Gu -
2018 Oral: Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization »
Jinghui Chen · Pan Xu · Lingxiao Wang · Jian Ma · Quanquan Gu -
2018 Oral: End-to-end Active Object Tracking via Reinforcement Learning »
Wenhan Luo · Peng Sun · Fangwei Zhong · Wei Liu · Tong Zhang · Yizhou Wang -
2018 Oral: Safe Element Screening for Submodular Function Minimization »
Weizhong Zhang · Bin Hong · Lin Ma · Wei Liu · Tong Zhang -
2017 Poster: Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference »
Aditya Chaudhry · Pan Xu · Quanquan Gu -
2017 Poster: High-Dimensional Variance-Reduced Stochastic Gradient Expectation-Maximization Algorithm »
Rongda Zhu · Lingxiao Wang · Chengxiang Zhai · Quanquan Gu -
2017 Poster: Projection-free Distributed Online Learning in Networks »
Wenpeng Zhang · Peilin Zhao · Wenwu Zhu · Steven Hoi · Tong Zhang -
2017 Poster: Robust Gaussian Graphical Model Estimation with Arbitrary Corruption »
Lingxiao Wang · Quanquan Gu -
2017 Talk: High-Dimensional Variance-Reduced Stochastic Gradient Expectation-Maximization Algorithm »
Rongda Zhu · Lingxiao Wang · Chengxiang Zhai · Quanquan Gu -
2017 Talk: Robust Gaussian Graphical Model Estimation with Arbitrary Corruption »
Lingxiao Wang · Quanquan Gu -
2017 Talk: Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference »
Aditya Chaudhry · Pan Xu · Quanquan Gu -
2017 Talk: Projection-free Distributed Online Learning in Networks »
Wenpeng Zhang · Peilin Zhao · Wenwu Zhu · Steven Hoi · Tong Zhang -
2017 Poster: Efficient Distributed Learning with Sparsity »
Jialei Wang · Mladen Kolar · Nati Srebro · Tong Zhang -
2017 Poster: A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery »
Lingxiao Wang · Xiao Zhang · Quanquan Gu -
2017 Talk: Efficient Distributed Learning with Sparsity »
Jialei Wang · Mladen Kolar · Nati Srebro · Tong Zhang -
2017 Talk: A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery »
Lingxiao Wang · Xiao Zhang · Quanquan Gu