Timezone: »
Two main families of node feature augmentation schemes have been explored for enhancing GNNs: random features and spectral positional encoding. Surprisingly, however, there is still no clear understanding of the relation between these two augmentation schemes. Here we propose a novel family of positional encoding schemes which draws a link between the above two approaches and improves over both. The new approach, named Random Feature Propagation (RFP), is inspired by the power iteration method and its generalizations. It concatenates several intermediate steps of an iterative algorithm for computing the dominant eigenvectors of a propagation matrix, starting from random node features. Notably, these propagation steps are based on graph-dependent propagation operators that can be either predefined or learned. We explore the theoretical and empirical benefits of RFP. First, we provide theoretical justifications for using random features, for incorporating early propagation steps, and for using multiple random initializations. Then, we empirically demonstrate that RFP significantly outperforms both spectral PE and random features in multiple node classification and graph classification benchmarks.
Author Information
Moshe Eliasof (Ben-Gurion University of the Negev)
Fabrizio Frasca (Imperial College London)
Beatrice Bevilacqua (Purdue University)
Eran Treister (Ben-Gurion University of the Negev)
Gal Chechik (NVIDIA / Bar-Ilan University)
Haggai Maron (NVIDIA Research)
I am a Research Scientist at NVIDIA Research. My main fields of interest are machine learning, optimization, and shape analysis. More specifically, I am working on applying deep learning to irregular domains (e.g., graphs, point clouds, and surfaces) and graph/shape matching problems. I completed my Ph.D. in 2019 at the Department of Computer Science and Applied Mathematics at the Weizmann Institute of Science under the supervision of Prof. Yaron Lipman.
More from the Same Authors
-
2020 : (#77 / Sess. 1) SIGN: Scalable Inception Graph Neural Networks »
Fabrizio Frasca -
2023 : Learning to Initiate and Reason in Event-Driven Cascading Processes »
Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik -
2023 : Expressive Sign Equivariant Networks for Spectral Geometric Learning »
Derek Lim · Joshua Robinson · Stefanie Jegelka · Haggai Maron -
2023 Oral: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Learning to Initiate and Reason in Event-Driven Cascading Processes »
Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik -
2023 Poster: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Improving Graph Neural Networks with Learnable Propagation Operators »
Moshe Eliasof · Lars Ruthotto · Eran Treister -
2023 Oral: Equivariant Architectures for Learning in Deep Weight Spaces »
Aviv Navon · Aviv Shamsian · Idan Achituve · Ethan Fetaya · Gal Chechik · Haggai Maron -
2023 Poster: Equivariant Architectures for Learning in Deep Weight Spaces »
Aviv Navon · Aviv Shamsian · Idan Achituve · Ethan Fetaya · Gal Chechik · Haggai Maron -
2023 Poster: Neural Algorithmic Reasoning with Causal Regularisation »
Beatrice Bevilacqua · Kyriacos Nikiforou · Borja Ibarz · Ioana Bica · Michela Paganini · Charles Blundell · Jovana Mitrovic · Petar Veličković -
2023 Poster: Auxiliary Learning as an Asymmetric Bargaining Game »
Aviv Shamsian · Aviv Navon · Neta Glazer · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2022 Poster: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Spotlight: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Poster: Multi-Task Learning as a Bargaining Game »
Aviv Navon · Aviv Shamsian · Idan Achituve · Haggai Maron · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2022 Poster: pathGCN: Learning General Graph Spatial Operators from Paths »
Moshe Eliasof · Eldad Haber · Eran Treister -
2022 Spotlight: pathGCN: Learning General Graph Spatial Operators from Paths »
Moshe Eliasof · Eldad Haber · Eran Treister -
2022 Spotlight: Multi-Task Learning as a Bargaining Game »
Aviv Navon · Aviv Shamsian · Idan Achituve · Haggai Maron · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2021 Poster: GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning »
Idan Achituve · Aviv Navon · Yochai Yemini · Gal Chechik · Ethan Fetaya -
2021 Spotlight: GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning »
Idan Achituve · Aviv Navon · Yochai Yemini · Gal Chechik · Ethan Fetaya -
2021 Poster: Personalized Federated Learning using Hypernetworks »
Aviv Shamsian · Aviv Navon · Ethan Fetaya · Gal Chechik -
2021 Spotlight: Personalized Federated Learning using Hypernetworks »
Aviv Shamsian · Aviv Navon · Ethan Fetaya · Gal Chechik -
2021 Poster: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Spotlight: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Poster: Size-Invariant Graph Representations for Graph Classification Extrapolations »
Beatrice Bevilacqua · Yangze Zhou · Bruno Ribeiro -
2021 Poster: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2021 Poster: Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks »
Cristian Bodnar · Fabrizio Frasca · Yuguang Wang · Nina Otter · Guido Montufar · Pietro Lió · Michael Bronstein -
2021 Poster: From Local Structures to Size Generalization in Graph Neural Networks »
Gilad Yehudai · Ethan Fetaya · Eli Meirom · Gal Chechik · Haggai Maron -
2021 Spotlight: Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks »
Cristian Bodnar · Fabrizio Frasca · Yuguang Wang · Nina Otter · Guido Montufar · Pietro Lió · Michael Bronstein -
2021 Spotlight: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2021 Spotlight: From Local Structures to Size Generalization in Graph Neural Networks »
Gilad Yehudai · Ethan Fetaya · Eli Meirom · Gal Chechik · Haggai Maron -
2021 Oral: Size-Invariant Graph Representations for Graph Classification Extrapolations »
Beatrice Bevilacqua · Yangze Zhou · Bruno Ribeiro -
2020 Poster: On Learning Sets of Symmetric Elements »
Haggai Maron · Or Litany · Gal Chechik · Ethan Fetaya -
2020 Poster: Learning Algebraic Multigrid Using Graph Neural Networks »
Ilay Luz · Meirav Galun · Haggai Maron · Ronen Basri · Irad Yavneh