Timezone: »
Poster
Improved Regret for Efficient Online Reinforcement Learning with Linear Function Approximation
Uri Sherman · Tomer Koren · Yishay Mansour
We study reinforcement learning with linear function approximation and adversarially changing cost functions, a setup that has mostly been considered under simplifying assumptions such as full information feedback or exploratory conditions. We present a computationally efficient policy optimization algorithm for the challenging general setting of unknown dynamics and bandit feedback, featuring a combination of mirror-descent and least squares policy evaluation in an auxiliary MDP used to compute exploration bonuses. Our algorithm obtains an $\widetilde O(K^{6/7})$ regret bound, improving significantly over previous state-of-the-art of $\widetilde O (K^{14/15})$ in this setting. In addition, we present a version of the same algorithm under the assumption a simulator of the environment is available to the learner (but otherwise no exploratory assumptions are made), and prove it obtains state-of-the-art regret of $\widetilde O (K^{2/3})$.
Author Information
Uri Sherman (Tel Aviv University)
Tomer Koren (Tel Aviv University and Google)
Yishay Mansour (Google and Tel Aviv University)
More from the Same Authors
-
2021 : Minimax Regret for Stochastic Shortest Path »
Alon Cohen · Yonathan Efroni · Yishay Mansour · Aviv Rosenberg -
2021 : Oracle-Efficient Regret Minimization in Factored MDPs with Unknown Structure »
Aviv Rosenberg · Yishay Mansour -
2021 : Learning Adversarial Markov Decision Processes with Delayed Feedback »
Tal Lancewicki · Aviv Rosenberg · Yishay Mansour -
2022 : Optimism in Face of a Context: Regret Guarantees for Stochastic Contextual MDP »
Orin Levy · Yishay Mansour -
2022 : Near-optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2023 Oral: Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice »
Yishay Mansour · Richard Nock · Robert C. Williamson -
2023 Poster: Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2023 Poster: Reinforcement Learning Can Be More Efficient with Multiple Rewards »
Christoph Dann · Yishay Mansour · Mehryar Mohri -
2023 Poster: Regret Minimization and Convergence to Equilibria in General-sum Markov Games »
Liad Erez · Tal Lancewicki · Uri Sherman · Tomer Koren · Yishay Mansour -
2023 Poster: Concurrent Shuffle Differential Privacy Under Continual Observation »
Jay Tenenbaum · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2023 Poster: Efficient Rate Optimal Regret for Adversarial Contextual MDPs Using Online Function Approximation »
Orin Levy · Alon Cohen · Asaf Cassel · Yishay Mansour -
2023 Poster: Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice »
Yishay Mansour · Richard Nock · Robert C. Williamson -
2023 Poster: SGD with AdaGrad Stepsizes: Full Adaptivity with High Probability to Unknown Parameters, Unbounded Gradients and Affine Variance »
Amit Attia · Tomer Koren -
2022 : Near-optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2022 Poster: Cooperative Online Learning in Stochastic and Adversarial MDPs »
Tal Lancewicki · Aviv Rosenberg · Yishay Mansour -
2022 Poster: FriendlyCore: Practical Differentially Private Aggregation »
Eliad Tsfadia · Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2022 Oral: Cooperative Online Learning in Stochastic and Adversarial MDPs »
Tal Lancewicki · Aviv Rosenberg · Yishay Mansour -
2022 Spotlight: FriendlyCore: Practical Differentially Private Aggregation »
Eliad Tsfadia · Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2021 Poster: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Oral: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Poster: Differentially-Private Clustering of Easy Instances »
Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer · Eliad Tsfadia -
2021 Spotlight: Differentially-Private Clustering of Easy Instances »
Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer · Eliad Tsfadia -
2021 Poster: Adversarial Dueling Bandits »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Spotlight: Adversarial Dueling Bandits »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Poster: Online Policy Gradient for Model Free Learning of Linear Quadratic Regulators with √T Regret »
Asaf Cassel · Tomer Koren -
2021 Poster: Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions »
Tal Lancewicki · Shahar Segal · Tomer Koren · Yishay Mansour -
2021 Spotlight: Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions »
Tal Lancewicki · Shahar Segal · Tomer Koren · Yishay Mansour -
2021 Spotlight: Online Policy Gradient for Model Free Learning of Linear Quadratic Regulators with √T Regret »
Asaf Cassel · Tomer Koren -
2021 Poster: Dueling Convex Optimization »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Spotlight: Dueling Convex Optimization »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2020 Poster: Near-optimal Regret Bounds for Stochastic Shortest Path »
Aviv Rosenberg · Alon Cohen · Yishay Mansour · Haim Kaplan -
2019 Poster: Adversarial Online Learning with noise »
Alon Resler · Yishay Mansour -
2019 Poster: Online Convex Optimization in Adversarial Markov Decision Processes »
Aviv Rosenberg · Yishay Mansour -
2019 Poster: Learning Linear-Quadratic Regulators Efficiently with only $\sqrt{T}$ Regret »
Alon Cohen · Tomer Koren · Yishay Mansour -
2019 Poster: Differentially Private Learning of Geometric Concepts »
Haim Kaplan · Yishay Mansour · Yossi Matias · Uri Stemmer -
2019 Oral: Learning Linear-Quadratic Regulators Efficiently with only $\sqrt{T}$ Regret »
Alon Cohen · Tomer Koren · Yishay Mansour -
2019 Oral: Adversarial Online Learning with noise »
Alon Resler · Yishay Mansour -
2019 Oral: Differentially Private Learning of Geometric Concepts »
Haim Kaplan · Yishay Mansour · Yossi Matias · Uri Stemmer -
2019 Oral: Online Convex Optimization in Adversarial Markov Decision Processes »
Aviv Rosenberg · Yishay Mansour