Timezone: »
Transformers were originally proposed as a sequence-to-sequence model for text but have become vital for a wide range of modalities, including images, audio, video, and undirected graphs. However, transformers for directed graphs are a surprisingly underexplored topic, despite their applicability to ubiquitous domains, including source code and logic circuits. In this work, we propose two direction- and structure-aware positional encodings for directed graphs: (1) the eigenvectors of the Magnetic Laplacian — a direction-aware generalization of the combinatorial Laplacian; (2) directional random walk encodings. Empirically, we show that the extra directionality information is useful in various downstream tasks, including correctness testing of sorting networks and source code understanding. Together with a data-flow-centric graph construction, our model outperforms the prior state of the art on the Open Graph Benchmark Code2 relatively by 14.7%.
Author Information
Simon Markus Geisler (Technical University of Munich)
Yujia Li (DeepMind)
Daniel Mankowitz (Google)
Taylan Cemgil (DeepMind)
Stephan Günnemann (Technical University of Munich)
Cosmin Paduraru (DeepMind)
More from the Same Authors
-
2022 : Modeling Solutions to Ordinary and Partial Differential Equations with Continuous Initial Value Networks »
Marin Biloš · Andrei Smirdin · Stephan Günnemann -
2022 : On Quantum Computing for Neural Network Robustness Verification »
Nicola Franco · Tom Wollschläger · Jeanette Lorenz · Stephan Günnemann -
2023 : Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness »
Francesco Campi · Lukas Gosch · Tom Wollschläger · Yan Scholten · Stephan Günnemann -
2023 Poster: Generalizing Neural Wave Functions »
Nicholas Gao · Stephan Günnemann -
2023 Poster: Modeling Temporal Data as Continuous Functions with Stochastic Process Diffusion »
Marin Biloš · Kashif Rasul · Anderson Schneider · Yuriy Nevmyvaka · Stephan Günnemann -
2023 Poster: Ewald-based Long-Range Message Passing for Molecular Graphs »
Arthur Kosmala · Johannes Gasteiger · Nicholas Gao · Stephan Günnemann -
2023 Poster: Uncertainty Estimation for Molecules: Desiderata and Methods »
Tom Wollschläger · Nicholas Gao · Bertrand Charpentier · Mohamed Amine Ketata · Stephan Günnemann -
2022 : Irregularly-Sampled Time Series Modeling with Spline Networks »
Marin Biloš · Emanuel Ramneantu · Stephan Günnemann -
2022 Poster: Winning the Lottery Ahead of Time: Efficient Early Network Pruning »
John Rachwan · Daniel Zügner · Bertrand Charpentier · Simon Markus Geisler · Morgane Ayle · Stephan Günnemann -
2022 Spotlight: Winning the Lottery Ahead of Time: Efficient Early Network Pruning »
John Rachwan · Daniel Zügner · Bertrand Charpentier · Simon Markus Geisler · Morgane Ayle · Stephan Günnemann -
2022 Poster: 3D Infomax improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 Spotlight: 3D Infomax improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 Poster: Intriguing Properties of Input-Dependent Randomized Smoothing »
Peter Súkeník · Aleksei Kuvshinov · Stephan Günnemann -
2022 Poster: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2022 Spotlight: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2022 Spotlight: Intriguing Properties of Input-Dependent Randomized Smoothing »
Peter Súkeník · Aleksei Kuvshinov · Stephan Günnemann -
2021 Poster: Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable? »
Anna-Kathrin Kopetzki · Bertrand Charpentier · Daniel Zügner · Sandhya Giri · Stephan Günnemann -
2021 Spotlight: Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable? »
Anna-Kathrin Kopetzki · Bertrand Charpentier · Daniel Zügner · Sandhya Giri · Stephan Günnemann -
2021 Poster: Scalable Normalizing Flows for Permutation Invariant Densities »
Marin Biloš · Stephan Günnemann -
2021 Spotlight: Scalable Normalizing Flows for Permutation Invariant Densities »
Marin Biloš · Stephan Günnemann -
2021 Poster: Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More »
Johannes Gasteiger · Marten Lienen · Stephan Günnemann -
2021 Spotlight: Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More »
Johannes Gasteiger · Marten Lienen · Stephan Günnemann -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Paper spotlight: Deep Representation Learning and Clustering of Traffic Scenarios »
Nick Harmening · Stephan Günnemann · Marin Biloš -
2020 Poster: Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More »
Aleksandar Bojchevski · Johannes Gasteiger · Stephan Günnemann -
2020 Poster: Scalable Deep Generative Modeling for Sparse Graphs »
Hanjun Dai · Azade Nova · Yujia Li · Bo Dai · Dale Schuurmans -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 Poster: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Oral: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Poster: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Poster: Adversarial Attacks on Node Embeddings via Graph Poisoning »
Aleksandar Bojchevski · Stephan Günnemann -
2019 Oral: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: Adversarial Attacks on Node Embeddings via Graph Poisoning »
Aleksandar Bojchevski · Stephan Günnemann -
2018 Poster: NetGAN: Generating Graphs via Random Walks »
Aleksandar Bojchevski · Oleksandr Shchur · Daniel Zügner · Stephan Günnemann -
2018 Oral: NetGAN: Generating Graphs via Random Walks »
Aleksandar Bojchevski · Oleksandr Shchur · Daniel Zügner · Stephan Günnemann