Timezone: »
In reinforcement learning, the advantage function is critical for policy improvement, but is often extracted from a learned Q-function. A natural question is: Why not learn the advantage function directly? In this work, we introduce VA-learning, which directly learns advantage function and value function using bootstrapping, without explicit reference to Q-functions. VA-learning learns off-policy and enjoys similar theoretical guarantees as Q-learning. Thanks to the direct learning of advantage function and value function, VA-learning improves the sample efficiency over Q-learning both in tabular implementations and deep RL agents on Atari-57 games. We also identify a close connection between VA-learning and the dueling architecture, which partially explains why a simple architectural change to DQN agents tends to improve performance.
Author Information
Yunhao Tang (Google DeepMind)
Remi Munos (DeepMind)
Mark Rowland (Google DeepMind)
Michal Valko (Google DeepMind / Inria / MVA)
More from the Same Authors
-
2021 : Marginalized Operators for Off-Policy Reinforcement Learning »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 : Density-Based Bonuses on Learned Representations for Reward-Free Exploration in Deep Reinforcement Learning »
Omar Darwiche Domingues · Corentin Tallec · Remi Munos · Michal Valko -
2023 Poster: Understanding Self-Predictive Learning for Reinforcement Learning »
Yunhao Tang · Zhaohan Guo · Pierre Richemond · Bernardo Avila Pires · Yash Chandak · Remi Munos · Mark Rowland · Mohammad Gheshlaghi Azar · Charline Le Lan · Clare Lyle · Andras Gyorgy · Shantanu Thakoor · Will Dabney · Bilal Piot · Daniele Calandriello · Michal Valko -
2023 Poster: Half-Hop: A graph upsampling approach for slowing down message passing »
Mehdi Azabou · Venkataramana Ganesh · Shantanu Thakoor · Chi-Heng Lin · Lakshmi Sathidevi · Ran Liu · Michal Valko · Petar Veličković · Eva Dyer -
2023 Poster: Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments »
Daniel Jarrett · Corentin Tallec · Florent Altché · Thomas Mesnard · Remi Munos · Michal Valko -
2023 Poster: Representations and Exploration for Deep Reinforcement Learning using Singular Value Decomposition »
Yash Chandak · Shantanu Thakoor · Zhaohan Guo · Yunhao Tang · Remi Munos · Will Dabney · Diana Borsa -
2023 Poster: Towards a better understanding of representation dynamics under TD-learning »
Yunhao Tang · Remi Munos -
2023 Oral: Adapting to game trees in zero-sum imperfect information games »
Côme Fiegel · Pierre Menard · Tadashi Kozuno · Remi Munos · Vianney Perchet · Michal Valko -
2023 Poster: Bootstrapped Representations in Reinforcement Learning »
Charline Le Lan · Stephen Tu · Mark Rowland · Anna Harutyunyan · Rishabh Agarwal · Marc Bellemare · Will Dabney -
2023 Poster: Adapting to game trees in zero-sum imperfect information games »
Côme Fiegel · Pierre Menard · Tadashi Kozuno · Remi Munos · Vianney Perchet · Michal Valko -
2023 Poster: Fast Rates for Maximum Entropy Exploration »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Yunhao Tang · Michal Valko · Pierre Menard -
2023 Oral: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation »
Mark Rowland · Yunhao Tang · Clare Lyle · Remi Munos · Marc Bellemare · Will Dabney -
2023 Poster: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: DoMo-AC: Doubly Multi-step Off-policy Actor-Critic Algorithm »
Yunhao Tang · Tadashi Kozuno · Mark Rowland · Anna Harutyunyan · Remi Munos · Bernardo Avila Pires · Michal Valko -
2023 Poster: The Edge of Orthogonality: A Simple View of What Makes BYOL Tick »
Pierre Richemond · Allison Tam · Yunhao Tang · Florian Strub · Bilal Piot · Feilx Hill -
2023 Poster: Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice »
Toshinori Kitamura · Tadashi Kozuno · Yunhao Tang · Nino Vieillard · Michal Valko · Wenhao Yang · Jincheng Mei · Pierre Menard · Mohammad Gheshlaghi Azar · Remi Munos · Olivier Pietquin · Matthieu Geist · Csaba Szepesvari · Wataru Kumagai · Yutaka Matsuo -
2022 Poster: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Poster: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Poster: Generalised Policy Improvement with Geometric Policy Composition »
Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto -
2022 Spotlight: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Oral: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Oral: Generalised Policy Improvement with Geometric Policy Composition »
Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto -
2022 Poster: Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning »
Yunhao Tang -
2022 Spotlight: Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning »
Yunhao Tang -
2021 Poster: Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning »
Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel -
2021 Poster: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2021 Poster: Taylor Expansion of Discount Factors »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 Spotlight: Taylor Expansion of Discount Factors »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 Spotlight: Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning »
Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel -
2021 Spotlight: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2020 Poster: Monte-Carlo Tree Search as Regularized Policy Optimization »
Jean-Bastien Grill · Florent Altché · Yunhao Tang · Thomas Hubert · Michal Valko · Ioannis Antonoglou · Remi Munos -
2020 Poster: Revisiting Fundamentals of Experience Replay »
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney -
2020 Poster: Fast computation of Nash Equilibria in Imperfect Information Games »
Remi Munos · Julien Perolat · Jean-Baptiste Lespiau · Mark Rowland · Bart De Vylder · Marc Lanctot · Finbarr Timbers · Daniel Hennes · Shayegan Omidshafiei · Audrunas Gruslys · Mohammad Gheshlaghi Azar · Edward Lockhart · Karl Tuyls -
2020 Poster: Learning to Score Behaviors for Guided Policy Optimization »
Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Krzysztof Choromanski · Anna Choromanska · Michael Jordan -
2020 Poster: Reinforcement Learning for Integer Programming: Learning to Cut »
Yunhao Tang · Shipra Agrawal · Yuri Faenza -
2020 Poster: Taylor Expansion Policy Optimization »
Yunhao Tang · Michal Valko · Remi Munos -
2019 : poster session I »
Nicholas Rhinehart · Yunhao Tang · Vinay Prabhu · Dian Ang Yap · Alexander Wang · Marc Finzi · Manoj Kumar · You Lu · Abhishek Kumar · Qi Lei · Michael Przystupa · Nicola De Cao · Polina Kirichenko · Pavel Izmailov · Andrew Wilson · Jakob Kruse · Diego Mesquita · Mario Lezcano Casado · Thomas Müller · Keir Simmons · Andrei Atanov -
2019 Poster: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Oral: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2018 Poster: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Poster: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Oral: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Poster: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2018 Poster: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Oral: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2017 Poster: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Talk: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Poster: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Poster: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Poster: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos -
2017 Talk: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Talk: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Talk: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos