Timezone: »
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/biggerbetterfaster.
Author Information
Max Schwarzer (Mila, Apple MLR)
Johan Obando Ceron (Mila / Université de Montréal)
Aaron Courville (University of Montreal)
Marc Bellemare (Google DeepMind)
Rishabh Agarwal (Google DeepMind)
Pablo Samuel Castro (Google DeepMind)
Pablo was born and raised in Quito, Ecuador, and moved to Montreal after high school to study at McGill. He stayed in Montreal for the next 10 years, finished his bachelors, worked at a flight simulator company, and then eventually obtained his masters and PhD at McGill, focusing on Reinforcement Learning. After his PhD Pablo did a 10-month postdoc in Paris before moving to Pittsburgh to join Google. He has worked at Google for almost 6 years, and is currently a research Software Engineer in Google Brain in Montreal, focusing on fundamental Reinforcement Learning research, as well as Machine Learning and Music. Aside from his interest in coding/AI/math, Pablo is an active musician (https://www.psctrio.com), loves running (5 marathons so far, including Boston!), and discussing politics and activism.
More from the Same Authors
-
2021 : Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Sékou-Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2021 : A functional mirror ascent view of policy gradient methods with function approximation »
Sharan Vaswani · Olivier Bachem · Simone Totaro · Matthieu Geist · Marlos C. Machado · Pablo Samuel Castro · Nicolas Le Roux -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation »
Evgenii Nikishin · Romina Abachi · Rishabh Agarwal · Pierre-Luc Bacon -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2022 : Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels »
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste -
2023 : Do as your neighbors: Invariant learning through non-parametric neighbourhood matching »
Andrei Nicolicioiu · Jerry Huang · Dhanya Sridhar · Aaron Courville -
2023 : Learning with Learning Awareness using Meta-Values »
Tim Cooijmans · Milad Aghajohari · Aaron Courville -
2023 : Suboptimal Data Can Bottleneck Scaling »
Jacob Buckman · Kshitij Gupta · Ethan Caballero · Rishabh Agarwal · Marc Bellemare -
2023 Poster: Revisiting Bellman Errors for Offline Model Selection »
Joshua Zitovsky · Daniel de Marchi · Rishabh Agarwal · Michael Kosorok -
2023 Poster: Bootstrapped Representations in Reinforcement Learning »
Charline Le Lan · Stephen Tu · Mark Rowland · Anna Harutyunyan · Rishabh Agarwal · Marc Bellemare · Will Dabney -
2023 Poster: The Dormant Neuron Phenomenon in Deep Reinforcement Learning »
Ghada Sokar · Rishabh Agarwal · Pablo Samuel Castro · Utku Evci -
2023 Oral: Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels »
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste -
2023 Oral: The Dormant Neuron Phenomenon in Deep Reinforcement Learning »
Ghada Sokar · Rishabh Agarwal · Pablo Samuel Castro · Utku Evci -
2023 Poster: The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation »
Mark Rowland · Yunhao Tang · Clare Lyle · Remi Munos · Marc Bellemare · Will Dabney -
2023 Poster: Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels »
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste -
2022 : Estimating Policy Functions in Payments Systems Using Reinforcement Learning »
Pablo Samuel Castro -
2022 Poster: The State of Sparse Training in Deep Reinforcement Learning »
Laura Graesser · Utku Evci · Erich Elsen · Pablo Samuel Castro -
2022 Spotlight: The State of Sparse Training in Deep Reinforcement Learning »
Laura Graesser · Utku Evci · Erich Elsen · Pablo Samuel Castro -
2022 Poster: Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning »
Harley Wiltzer · David Meger · Marc Bellemare -
2022 Poster: The Primacy Bias in Deep Reinforcement Learning »
Evgenii Nikishin · Max Schwarzer · Pierluca D'Oro · Pierre-Luc Bacon · Aaron Courville -
2022 Spotlight: The Primacy Bias in Deep Reinforcement Learning »
Evgenii Nikishin · Max Schwarzer · Pierluca D'Oro · Pierre-Luc Bacon · Aaron Courville -
2022 Spotlight: Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning »
Harley Wiltzer · David Meger · Marc Bellemare -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 Social: RL Social »
Dibya Ghosh · Hager Radi · Derek Li · Alex Ayoub · Erfan Miahi · Rishabh Agarwal · Charline Le Lan · Abhishek Naik · John D. Martin · Shruti Mishra · Adrien Ali Taiga -
2021 Poster: Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research »
Johan Obando Ceron · Pablo Samuel Castro -
2021 Spotlight: Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research »
Johan Obando Ceron · Pablo Samuel Castro -
2020 Poster: Rigging the Lottery: Making All Tickets Winners »
Utku Evci · Trevor Gale · Jacob Menick · Pablo Samuel Castro · Erich Elsen -
2020 Poster: Revisiting Fundamentals of Experience Replay »
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney -
2020 Poster: An Optimistic Perspective on Offline Deep Reinforcement Learning »
Rishabh Agarwal · Dale Schuurmans · Mohammad Norouzi -
2020 Poster: Representations for Stable Off-Policy Reinforcement Learning »
Dibya Ghosh · Marc Bellemare -
2019 Poster: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Poster: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Oral: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Oral: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Poster: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Oral: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Poster: The Value Function Polytope in Reinforcement Learning »
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans -
2019 Poster: DeepMDP: Learning Continuous Latent Space Models for Representation Learning »
Carles Gelada · Saurabh Kumar · Jacob Buckman · Ofir Nachum · Marc Bellemare -
2019 Oral: The Value Function Polytope in Reinforcement Learning »
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans -
2019 Oral: DeepMDP: Learning Continuous Latent Space Models for Representation Learning »
Carles Gelada · Saurabh Kumar · Jacob Buckman · Ofir Nachum · Marc Bellemare -
2018 Poster: Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data »
Amjad Almahairi · Sai Rajeswar · Alessandro Sordoni · Philip Bachman · Aaron Courville -
2018 Poster: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Oral: Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data »
Amjad Almahairi · Sai Rajeswar · Alessandro Sordoni · Philip Bachman · Aaron Courville -
2018 Oral: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2017 : Panel Discussion »
Balaraman Ravindran · Chelsea Finn · Alessandro Lazaric · Katja Hofmann · Marc Bellemare -
2017 : Marc G. Bellemare: The role of density models in reinforcement learning »
Marc Bellemare -
2017 Poster: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Talk: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Poster: A Laplacian Framework for Option Discovery in Reinforcement Learning »
Marlos C. Machado · Marc Bellemare · Michael Bowling -
2017 Poster: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Poster: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Poster: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Talk: A Laplacian Framework for Option Discovery in Reinforcement Learning »
Marlos C. Machado · Marc Bellemare · Michael Bowling -
2017 Talk: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Talk: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu