Timezone: »
Automated decision support systems promise to help human experts solve multiclass classification tasks more efficiently and accurately. However, existing systems typically require experts to understand when to cede agency to the system or when to exercise their own agency. Otherwise, the experts may be better off solving the classification tasks on their own. In this work, we develop an automated decision support system that, by design, does not require experts to understand when to trust the system to improve performance. Rather than providing (single) label predictions and letting experts decide when to trust these predictions, our system provides sets of label predictions constructed using conformal prediction---prediction sets---and forcefully asks experts to predict labels from these sets. By using conformal prediction, our system can precisely trade-off the probability that the true label is not in the prediction set, which determines how frequently our system will mislead the experts, and the size of the prediction set, which determines the difficulty of the classification task the experts need to solve using our system. In addition, we develop an efficient and near-optimal search method to find the conformal predictor under which the experts benefit the most from using our system. Simulation experiments using synthetic and real expert predictions demonstrate that our system may help experts make more accurate predictions and is robust to the accuracy of the classifier the conformal predictor relies on.
Author Information
Eleni Straitouri (Max Planck Institute for Software Systems)
Luke Lequn Wang (Cornell University)
Nastaran Okati (Max Planck Institute for Software Systems)
Manuel Gomez-Rodriguez (MPI-SWS)

Manuel Gomez Rodriguez is a faculty at Max Planck Institute for Software Systems. Manuel develops human-centric machine learning models and algorithms for the analysis, modeling and control of social, information and networked systems. He has received several recognitions for his research, including an outstanding paper award at NeurIPS’13 and a best research paper honorable mention at KDD’10 and WWW’17. He has served as track chair for FAT* 2020 and as area chair for every major conference in machine learning, data mining and the Web. Manuel has co-authored over 50 publications in top-tier conferences (NeurIPS, ICML, WWW, KDD, WSDM, AAAI) and journals (PNAS, Nature Communications, JMLR, PLOS Computational Biology). Manuel holds a BS in Electrical Engineering from Carlos III University, a MS and PhD in Electrical Engineering from Stanford University, and has received postdoctoral training at the Max Planck Institute for Intelligent Systems.
More from the Same Authors
-
2021 : Learning to Switch Among Agents in a Team »
Manuel Gomez-Rodriguez · Vahid Balazadeh Meresht -
2021 : Counterfactual Explanations in Sequential Decision Making Under Uncertainty »
Stratis Tsirtsis · Abir De · Manuel Gomez-Rodriguez -
2021 : Differentiable Learning Under Triage »
Nastaran Okati · Abir De · Manuel Gomez-Rodriguez -
2023 : Finding Counterfactually Optimal Action Sequences in Continuous State Spaces »
Stratis Tsirtsis · Manuel Gomez-Rodriguez -
2023 : Designing Decision Support Systems Using Counterfactual Prediction Sets »
Eleni Straitouri · Manuel Gomez-Rodriguez -
2023 : Human-Aligned Calibration for AI-Assisted Decision Making »
Nina Corvelo Benz · Manuel Gomez-Rodriguez -
2023 Workshop: “Could it have been different?” Counterfactuals in Minds and Machines »
Nina Corvelo Benz · Ricardo Dominguez-Olmedo · Manuel Gomez-Rodriguez · Thorsten Joachims · Amir-Hossein Karimi · Stratis Tsirtsis · Isabel Valera · Sarah A Wu -
2023 Poster: On the Within-Group Fairness of Screening Classifiers »
Nastaran Okati · Stratis Tsirtsis · Manuel Gomez-Rodriguez -
2022 Poster: Improving Screening Processes via Calibrated Subset Selection »
Luke Lequn Wang · Thorsten Joachims · Manuel Gomez-Rodriguez -
2022 Spotlight: Improving Screening Processes via Calibrated Subset Selection »
Luke Lequn Wang · Thorsten Joachims · Manuel Gomez-Rodriguez -
2021 : Poster »
Shiji Zhou · Nastaran Okati · Wichinpong Sinchaisri · Kim de Bie · Ana Lucic · Mina Khan · Ishaan Shah · JINGHUI LU · Andreas Kirsch · Julius Frost · Ze Gong · Gokul Swamy · Ah Young Kim · Ahmed Baruwa · Ranganath Krishnan -
2021 : Differentiable learning Under Algorithmic Triage »
Manuel Gomez-Rodriguez -
2021 Workshop: ICML Workshop on Algorithmic Recourse »
Stratis Tsirtsis · Amir-Hossein Karimi · Ana Lucic · Manuel Gomez-Rodriguez · Isabel Valera · Hima Lakkaraju -
2021 Poster: Fairness of Exposure in Stochastic Bandits »
Luke Lequn Wang · Yiwei Bai · Wen Sun · Thorsten Joachims -
2021 Spotlight: Fairness of Exposure in Stochastic Bandits »
Luke Lequn Wang · Yiwei Bai · Wen Sun · Thorsten Joachims -
2019 Poster: CAB: Continuous Adaptive Blending for Policy Evaluation and Learning »
Yi Su · Luke Lequn Wang · Michele Santacatterina · Thorsten Joachims -
2019 Oral: CAB: Continuous Adaptive Blending for Policy Evaluation and Learning »
Yi Su · Luke Lequn Wang · Michele Santacatterina · Thorsten Joachims -
2018 Tutorial: Learning with Temporal Point Processes »
Manuel Gomez-Rodriguez · Isabel Valera