Timezone: »
We formalize the problem of contextual optimization through the lens of Bayesian experimental design and propose CO-BED---a general, model-agnostic framework for designing contextual experiments using information-theoretic principles. After formulating a suitable information-based objective, we employ black-box variational methods to simultaneously estimate it and optimize the designs in a single stochastic gradient scheme. In addition, to accommodate discrete actions within our framework, we propose leveraging continuous relaxation schemes, which can naturally be integrated into our variational objective. As a result, CO-BED provides a general and automated solution to a wide range of contextual optimization problems. We illustrate its effectiveness in a number of experiments, where CO-BED demonstrates competitive performance even when compared to bespoke, model-specific alternatives.
Author Information
Desi Ivanova (University of Oxford)
Joel Jennings (Microsoft)
Tom Rainforth (University of Oxford)
Cheng Zhang (Microsoft Research, Cambridge)
Adam Foster (Microsoft Research)
More from the Same Authors
-
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2021 : Optimal transport for causal discovery »
Ruibo Tu · Kun Zhang · Hedvig Kjellström · Cheng Zhang -
2021 : VICAUSE: Simultaneous missing value imputation and causal discovery »
Pablo Morales-Alvarez · Angus Lamb · Simon Woodhead · Simon Pyton Jones · Miltiadis Allamanis · Cheng Zhang -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2022 : [Poster] Automated Adaptive Design in Real Time »
Desi Ivanova -
2023 : BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery »
Yashas Annadani · Nick Pawlowski · Joel Jennings · Stefan Bauer · Cheng Zhang · Wenbo Gong -
2023 : Answering Causal Questions with Augmented LLMs »
Nick Pawlowski · Joel Jennings · Cheng Zhang -
2023 : RustGen: An Augmentation Approach for Generating Compilable Rust Code with Large Language Models »
Xingbo Wu · Nathanaël Cheriere · Cheng Zhang · Dushyanth Narayanan -
2023 Workshop: Challenges in Deployable Generative AI »
Swami Sankaranarayanan · Thomas Hartvigsen · Camille Bilodeau · Ryutaro Tanno · Cheng Zhang · Florian Tramer · Phillip Isola -
2023 Poster: Learning Instance-Specific Augmentations by Capturing Local Invariances »
Ning Miao · Tom Rainforth · Emile Mathieu · Yann Dubois · Yee-Whye Teh · Adam Foster · Hyunjik Kim -
2023 Poster: Differentiable Multi-Target Causal Bayesian Experimental Design »
Panagiotis Tigas · Yashas Annadani · Desi Ivanova · Andrew Jesson · Yarin Gal · Adam Foster · Stefan Bauer -
2022 Poster: Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness »
Adam Foster · Arpi Vezer · Craig Glastonbury · Páidí Creed · Sam Abujudeh · Aaron Sim -
2022 Oral: Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness »
Adam Foster · Arpi Vezer · Craig Glastonbury · Páidí Creed · Sam Abujudeh · Aaron Sim -
2022 : Poster Session 2 »
Asra Aslam · Sowmya Vijayakumar · Heta Gandhi · Mary Adewunmi · You Cheng · Tong Yang · Kristina Ulicna · · Weiwei Zong · Narmada Naik · Akshata Tiwari · Ambreen Hamadani · Mayuree Binjolkar · Charupriya Sharma · Chhavi Yadav · Yu Yang · Winnie Xu · QINGQING ZHAO · Julissa Giuliana Villanueva Llerena · Lilian Mkonyi · Berthine Nyunga Mpinda · Rehema Mwawado · Tooba Imtiaz · Desi Ivanova · Emma Johanna Mikaela Petersson Svensson · Angela Bitto-Nemling · Elisabeth Rumetshofer · Ana Sanchez Fernandez · Garima Giri · Sigrid Passano Hellan · Catherine Ordun · Vasiliki Tassopoulou · Gina Wong -
2022 : Poster Session 1 »
Asra Aslam · Sowmya Vijayakumar · Heta Gandhi · Mary Adewunmi · You Cheng · Tong Yang · Kristina Ulicna · · Weiwei Zong · Narmada Naik · Akshata Tiwari · Ambreen Hamadani · Mayuree Binjolkar · Charupriya Sharma · Chhavi Yadav · Yu Yang · Winnie Xu · QINGQING ZHAO · Julissa Giuliana Villanueva Llerena · Lilian Mkonyi · Berthine Nyunga Mpinda · Rehema Mwawado · Tooba Imtiaz · Desi Ivanova · Emma Johanna Mikaela Petersson Svensson · Angela Bitto-Nemling · Elisabeth Rumetshofer · Ana Sanchez Fernandez · Garima Giri · Sigrid Passano Hellan · Catherine Ordun · Vasiliki Tassopoulou · Gina Wong -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Yarin Gal · Tom Rainforth · Andreas Kirsch -
2021 Poster: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Poster: Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design »
Adam Foster · Desi Ivanova · ILYAS MALIK · Tom Rainforth -
2021 Poster: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Spotlight: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Oral: Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design »
Adam Foster · Desi Ivanova · ILYAS MALIK · Tom Rainforth -
2021 Spotlight: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Poster: Probabilistic Programs with Stochastic Conditioning »
David Tolpin · Yuan Zhou · Tom Rainforth · Hongseok Yang -
2021 Spotlight: Probabilistic Programs with Stochastic Conditioning »
David Tolpin · Yuan Zhou · Tom Rainforth · Hongseok Yang -
2020 : "Designing Bayesian-Optimal Experiments with Stochastic Gradients" »
Tom Rainforth -
2020 : Invited talk 4: Divergence Measures in Variational Inference and How to Choose Them »
Cheng Zhang -
2020 Poster: Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support »
Yuan Zhou · Hongseok Yang · Yee-Whye Teh · Tom Rainforth -
2019 : Cheng Zhang: Active Mini-Batch Sampling using Repulsive Point Processes »
Cheng Zhang -
2019 Poster: Disentangling Disentanglement in Variational Autoencoders »
Emile Mathieu · Tom Rainforth · N Siddharth · Yee-Whye Teh -
2019 Poster: EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE »
Chao Ma · Sebastian Tschiatschek · Konstantina Palla · Jose Miguel Hernandez-Lobato · Sebastian Nowozin · Cheng Zhang -
2019 Oral: EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE »
Chao Ma · Sebastian Tschiatschek · Konstantina Palla · Jose Miguel Hernandez-Lobato · Sebastian Nowozin · Cheng Zhang -
2019 Oral: Disentangling Disentanglement in Variational Autoencoders »
Emile Mathieu · Tom Rainforth · N Siddharth · Yee-Whye Teh -
2019 Poster: Amortized Monte Carlo Integration »
Adam Golinski · Frank Wood · Tom Rainforth -
2019 Oral: Amortized Monte Carlo Integration »
Adam Golinski · Frank Wood · Tom Rainforth -
2018 Poster: On Nesting Monte Carlo Estimators »
Tom Rainforth · Rob Cornish · Hongseok Yang · andrew warrington · Frank Wood -
2018 Oral: On Nesting Monte Carlo Estimators »
Tom Rainforth · Rob Cornish · Hongseok Yang · andrew warrington · Frank Wood -
2018 Poster: Tighter Variational Bounds are Not Necessarily Better »
Tom Rainforth · Adam Kosiorek · Tuan Anh Le · Chris Maddison · Maximilian Igl · Frank Wood · Yee-Whye Teh -
2018 Oral: Tighter Variational Bounds are Not Necessarily Better »
Tom Rainforth · Adam Kosiorek · Tuan Anh Le · Chris Maddison · Maximilian Igl · Frank Wood · Yee-Whye Teh