Timezone: »
We introduce InstaAug, a method for automatically learning input-specific augmentations from data. Previous methods for learning augmentations have typically assumed independence between the original input and the transformation applied to that input. This can be highly restrictive, as the invariances we hope our augmentation will capture are themselves often highly input dependent. InstaAug instead introduces a learnable invariance module that maps from inputs to tailored transformation parameters, allowing local invariances to be captured. This can be simultaneously trained alongside the downstream model in a fully end-to-end manner, or separately learned for a pre-trained model. We empirically demonstrate that InstaAug learns meaningful input-dependent augmentations for a wide range of transformation classes, which in turn provides better performance on both supervised and self-supervised tasks.
Author Information
Ning Miao (University of Oxford)
Tom Rainforth (University of Oxford)
Emile Mathieu (University of Oxford)
Yann Dubois (Stanford University)
Yee-Whye Teh (Oxford and DeepMind)
Adam Foster (Microsoft Research)
Hyunjik Kim (DeepMind)
More from the Same Authors
-
2021 : Continual Learning via Function-Space Variational Inference: A Unifying View »
Tim G. J. Rudner · Freddie Bickford Smith · Qixuan Feng · Yee-Whye Teh · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2022 : Riemannian Diffusion Schr\"odinger Bridge »
James Thornton · Valentin De Bortoli · Michael Hutchinson · Emile Mathieu · Yee Whye Teh · Arnaud Doucet -
2022 : Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations »
Cong Lu · Philip Ball · Tim G. J Rudner · Jack Parker-Holder · Michael A Osborne · Yee-Whye Teh -
2023 : Synthetic Experience Replay »
Cong Lu · Philip Ball · Yee-Whye Teh · Jack Parker-Holder -
2023 : Revisiting Associative Compression: I Can't Believe It's Not Better »
Winnie Xu · Matthew Muckley · Yann Dubois · Karen Ullrich -
2023 Poster: Modality-Agnostic Variational Compression of Implicit Neural Representations »
Jonathan Richard Schwarz · Jihoon Tack · Yee-Whye Teh · Jaeho Lee · Jinwoo Shin -
2023 Poster: CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design »
Desi Ivanova · Joel Jennings · Tom Rainforth · Cheng Zhang · Adam Foster -
2023 Oral: Evaluating Self-Supervised Learning via Risk Decomposition »
Yann Dubois · Tatsunori Hashimoto · Percy Liang -
2023 Poster: Evaluating Self-Supervised Learning via Risk Decomposition »
Yann Dubois · Tatsunori Hashimoto · Percy Liang -
2023 Poster: Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions »
Leo Klarner · Tim G. J. Rudner · Michael Reutlinger · Torsten Schindler · Garrett Morris · Charlotte Deane · Yee-Whye Teh -
2023 Poster: Differentiable Multi-Target Causal Bayesian Experimental Design »
Panagiotis Tigas · Yashas Annadani · Desi Ivanova · Andrew Jesson · Yarin Gal · Adam Foster · Stefan Bauer -
2023 Poster: SE(3) diffusion model with application to protein backbone generation »
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Continual Learning via Sequential Function-Space Variational Inference »
Tim G. J Rudner · Freddie Bickford Smith · QIXUAN FENG · Yee-Whye Teh · Yarin Gal -
2022 Spotlight: Continual Learning via Sequential Function-Space Variational Inference »
Tim G. J Rudner · Freddie Bickford Smith · QIXUAN FENG · Yee-Whye Teh · Yarin Gal -
2022 Poster: From data to functa: Your data point is a function and you can treat it like one »
Emilien Dupont · Hyunjik Kim · S. M. Ali Eslami · Danilo J. Rezende · Dan Rosenbaum -
2022 Poster: Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness »
Adam Foster · Arpi Vezer · Craig Glastonbury · Páidí Creed · Sam Abujudeh · Aaron Sim -
2022 Spotlight: From data to functa: Your data point is a function and you can treat it like one »
Emilien Dupont · Hyunjik Kim · S. M. Ali Eslami · Danilo J. Rezende · Dan Rosenbaum -
2022 Oral: Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness »
Adam Foster · Arpi Vezer · Craig Glastonbury · Páidí Creed · Sam Abujudeh · Aaron Sim -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Yarin Gal · Tom Rainforth · Andreas Kirsch -
2021 : Continual Learning via Function-Space Variational Inference: A Unifying View »
Yarin Gal · Yee-Whye Teh · Qixuan Feng · Freddie Bickford Smith · Tim G. J. Rudner -
2021 Poster: Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes »
Peter Holderrieth · Michael Hutchinson · Yee-Whye Teh -
2021 Spotlight: Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes »
Peter Holderrieth · Michael Hutchinson · Yee-Whye Teh -
2021 Test Of Time: Bayesian Learning via Stochastic Gradient Langevin Dynamics »
Yee Teh · Max Welling -
2021 Poster: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Poster: Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design »
Adam Foster · Desi Ivanova · ILYAS MALIK · Tom Rainforth -
2021 Poster: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Spotlight: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Oral: Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design »
Adam Foster · Desi Ivanova · ILYAS MALIK · Tom Rainforth -
2021 Spotlight: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Poster: Probabilistic Programs with Stochastic Conditioning »
David Tolpin · Yuan Zhou · Tom Rainforth · Hongseok Yang -
2021 Spotlight: Probabilistic Programs with Stochastic Conditioning »
David Tolpin · Yuan Zhou · Tom Rainforth · Hongseok Yang -
2021 Poster: LieTransformer: Equivariant Self-Attention for Lie Groups »
Michael Hutchinson · Charline Le Lan · Sheheryar Zaidi · Emilien Dupont · Yee-Whye Teh · Hyunjik Kim -
2021 Spotlight: LieTransformer: Equivariant Self-Attention for Lie Groups »
Michael Hutchinson · Charline Le Lan · Sheheryar Zaidi · Emilien Dupont · Yee-Whye Teh · Hyunjik Kim -
2020 : "Designing Bayesian-Optimal Experiments with Stochastic Gradients" »
Tom Rainforth -
2020 Poster: MetaFun: Meta-Learning with Iterative Functional Updates »
Jin Xu · Jean-Francois Ton · Hyunjik Kim · Adam Kosiorek · Yee-Whye Teh -
2020 Poster: Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support »
Yuan Zhou · Hongseok Yang · Yee-Whye Teh · Tom Rainforth -
2020 Poster: Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise »
Umut Simsekli · Lingjiong Zhu · Yee-Whye Teh · Mert Gurbuzbalaban -
2020 Poster: Uncertainty Estimation Using a Single Deep Deterministic Neural Network »
Joost van Amersfoort · Lewis Smith · Yee-Whye Teh · Yarin Gal -
2019 Oral: Hybrid Models with Deep and Invertible Features »
Eric Nalisnick · Akihiro Matsukawa · Yee-Whye Teh · Dilan Gorur · Balaji Lakshminarayanan -
2019 Poster: Disentangling Disentanglement in Variational Autoencoders »
Emile Mathieu · Tom Rainforth · N Siddharth · Yee-Whye Teh -
2019 Poster: Hybrid Models with Deep and Invertible Features »
Eric Nalisnick · Akihiro Matsukawa · Yee-Whye Teh · Dilan Gorur · Balaji Lakshminarayanan -
2019 Oral: Disentangling Disentanglement in Variational Autoencoders »
Emile Mathieu · Tom Rainforth · N Siddharth · Yee-Whye Teh -
2019 Poster: Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks »
Juho Lee · Yoonho Lee · Jungtaek Kim · Adam Kosiorek · Seungjin Choi · Yee-Whye Teh -
2019 Poster: Amortized Monte Carlo Integration »
Adam Golinski · Frank Wood · Tom Rainforth -
2019 Oral: Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks »
Juho Lee · Yoonho Lee · Jungtaek Kim · Adam Kosiorek · Seungjin Choi · Yee-Whye Teh -
2019 Oral: Amortized Monte Carlo Integration »
Adam Golinski · Frank Wood · Tom Rainforth -
2018 Poster: On Nesting Monte Carlo Estimators »
Tom Rainforth · Rob Cornish · Hongseok Yang · andrew warrington · Frank Wood -
2018 Poster: Progress & Compress: A scalable framework for continual learning »
Jonathan Richard Schwarz · Wojciech Czarnecki · Jelena Luketina · Agnieszka Grabska-Barwinska · Yee Teh · Razvan Pascanu · Raia Hadsell -
2018 Poster: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Oral: On Nesting Monte Carlo Estimators »
Tom Rainforth · Rob Cornish · Hongseok Yang · andrew warrington · Frank Wood -
2018 Oral: Progress & Compress: A scalable framework for continual learning »
Jonathan Richard Schwarz · Wojciech Czarnecki · Jelena Luketina · Agnieszka Grabska-Barwinska · Yee Teh · Razvan Pascanu · Raia Hadsell -
2018 Oral: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Poster: Disentangling by Factorising »
Hyunjik Kim · Andriy Mnih -
2018 Poster: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami -
2018 Poster: Tighter Variational Bounds are Not Necessarily Better »
Tom Rainforth · Adam Kosiorek · Tuan Anh Le · Chris Maddison · Maximilian Igl · Frank Wood · Yee-Whye Teh -
2018 Oral: Tighter Variational Bounds are Not Necessarily Better »
Tom Rainforth · Adam Kosiorek · Tuan Anh Le · Chris Maddison · Maximilian Igl · Frank Wood · Yee-Whye Teh -
2018 Oral: Disentangling by Factorising »
Hyunjik Kim · Andriy Mnih -
2018 Oral: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami