Timezone: »
Transport maps can ease the sampling of distributions with non-trivial geometries by transforming them into distributions that are easier to handle. The potential of this approach has risen with the development of Normalizing Flows (NF) which are maps parameterized with deep neural networks trained to push a reference distribution towards a target. NF-enhanced samplers recently proposed blend (Markov chain) Monte Carlo methods with either (i) proposal draws from the flow or (ii) a flow-based reparametrization. In both cases, the quality of the learned transport conditions performance. The present work clarifies for the first time the relative strengths and weaknesses of these two approaches. Our study concludes that multimodal targets can be reliably handled with flow-based proposals up to moderately high dimensions. In contrast, methods relying on reparametrization struggle with multimodality but are more robust otherwise in high-dimensional settings and under poor training. To further illustrate the influence of target-proposal adequacy, we also derive a new quantitative bound for the mixing time of the Independent Metropolis-Hastings sampler.
Author Information
Louis Grenioux (École Polytechnique)
Alain Oliviero Durmus (École Polytechnique)
Eric Moulines (Ecole Polytechnique)
Marylou Gabrié (NYU / Flatiron Institute)
More from the Same Authors
-
2021 : Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods »
Marylou Gabrié -
2021 : On the interplay between data structure and loss function: an analytical study of generalization for classification »
Stéphane d'Ascoli · Marylou Gabrié · Levent Sagun · Giulio Biroli -
2021 : Model-Free Approach to Evaluate Reinforcement Learning Algorithms »
Denis Belomestny · Ilya Levin · Eric Moulines · Alexey Naumov · Sergey Samsonov · Veronika Zorina -
2023 : Balanced Training of Energy-Based Models with Adaptive Flow Sampling »
Louis Grenioux · Eric Moulines · Marylou Gabrié -
2023 Poster: Conformal Prediction for Federated Uncertainty Quantification Under Label Shift »
Vincent Plassier · Mehdi Makni · Aleksandr Rubashevskii · Eric Moulines · Maxim Panov -
2023 Poster: Fast Rates for Maximum Entropy Exploration »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Yunhao Tang · Michal Valko · Pierre Menard -
2023 Oral: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: State and parameter learning with PARIS particle Gibbs »
Gabriel Cardoso · Yazid Janati el idrissi · Sylvain Le Corff · Eric Moulines · Jimmy Olsson -
2022 Poster: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Oral: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Poster: Diffusion bridges vector quantized variational autoencoders »
Max Cohen · Guillaume QUISPE · Sylvain Le Corff · Charles Ollion · Eric Moulines -
2022 Spotlight: Diffusion bridges vector quantized variational autoencoders »
Max Cohen · Guillaume QUISPE · Sylvain Le Corff · Charles Ollion · Eric Moulines -
2021 Poster: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Spotlight: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Poster: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs »
Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Oral: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs »
Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Poster: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Spotlight: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2020 Poster: Fast and Consistent Learning of Hidden Markov Models by Incorporating Non-Consecutive Correlations »
Robert Mattila · Cristian R. Rojas · Eric Moulines · Vikram Krishnamurthy · Bo Wahlberg