Timezone: »
Poster
Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun
We study reinforcement learning with function approximation for large-scale Partially Observable Markov Decision Processes (POMDPs) where the state space and observation space are large or even continuous. Particularly, we consider Hilbert space embeddings of POMDP where the feature of latent states and the feature of observations admit a conditional Hilbert space embedding of the observation emission process, and the latent state transition is deterministic. Under the function approximation setup where the optimal latent state-action $Q$-function is linear in the state feature, and the optimal $Q$-function has a gap in actions, we provide a computationally and statistically efficient algorithm for finding the exact optimal policy. We show our algorithm's computational and statistical complexities scale polynomially with respect to the horizon and the intrinsic dimension of the feature on the observation space. Furthermore, we show both the deterministic latent transitions and gap assumptions are necessary to avoid statistical complexity exponential in horizon or dimension. Since our guarantee does not have an explicit dependence on the size of the state and observation spaces, our algorithm provably scales to large-scale POMDPs.
Author Information
Masatoshi Uehara (Cornell University)
Ayush Sekhari (Cornell University)
Jason Lee (Princeton University)
Nathan Kallus (Cornell University)
Wen Sun (Cornell University)
More from the Same Authors
-
2021 : Remember What You Want to Forget: Algorithms for Machine Unlearning »
Ayush Sekhari · Ayush Sekhari · Jayadev Acharya · Gautam Kamath · Ananda Theertha Suresh -
2021 : Corruption Robust Offline Reinforcement Learning »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2021 : Mitigating Covariate Shift in Imitation Learning via Offline Data Without Great Coverage »
Jonathan Chang · Masatoshi Uehara · Dhruv Sreenivas · Rahul Kidambi · Wen Sun -
2021 : MobILE: Model-Based Imitation Learning From Observation Alone »
Rahul Kidambi · Jonathan Chang · Wen Sun -
2023 : When is Agnostic Reinforcement Learning Statistically Tractable? »
Gene Li · Zeyu Jia · Alexander Rakhlin · Ayush Sekhari · Nati Srebro -
2023 : Teaching Arithmetic to Small Transformers »
Nayoung Lee · Kartik Sreenivasan · Jason Lee · Kangwook Lee · Dimitris Papailiopoulos -
2023 : Scaling In-Context Demonstrations with Structured Attention »
Tianle Cai · Kaixuan Huang · Jason Lee · Mengdi Wang · Danqi Chen -
2023 : Fine-Tuning Language Models with Just Forward Passes »
Sadhika Malladi · Tianyu Gao · Eshaan Nichani · Jason Lee · Danqi Chen · Sanjeev Arora -
2023 : Reward Collapse in Aligning Large Language Models: A Prompt-Aware Approach to Preference Rankings »
Ziang Song · Tianle Cai · Jason Lee · Weijie Su -
2023 : Representation Learning in Low-rank Slate-based Recommender Systems »
Yijia Dai · Wen Sun -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 : Contextual Bandits and Imitation Learning with Preference-Based Active Queries »
Ayush Sekhari · Karthik Sridharan · Wen Sun · Runzhe Wu -
2023 : Selective Sampling and Imitation Learning via Online Regression »
Ayush Sekhari · Karthik Sridharan · Wen Sun · Runzhe Wu -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 : How to Query Human Feedback Efficiently in RL? »
Wenhao Zhan · Masatoshi Uehara · Wen Sun · Jason Lee -
2023 : Contextual Bandits and Imitation Learning with Preference-Based Active Queries »
Ayush Sekhari · Karthik Sridharan · Wen Sun · Runzhe Wu -
2023 : 🎤 Fine-Tuning Language Models with Just Forward Passes »
Sadhika Malladi · Tianyu Gao · Eshaan Nichani · Alex Damian · Jason Lee · Danqi Chen · Sanjeev Arora -
2023 : How to Query Human Feedback Efficiently in RL? »
Wenhao Zhan · Masatoshi Uehara · Wen Sun · Jason Lee -
2023 Poster: Efficient displacement convex optimization with particle gradient descent »
Hadi Daneshmand · Jason Lee · Chi Jin -
2023 Poster: Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR »
Kaiwen Wang · Nathan Kallus · Wen Sun -
2023 Poster: Smooth Non-stationary Bandits »
Su Jia · Qian Xie · Nathan Kallus · Peter Frazier -
2023 Poster: Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning »
Yulai Zhao · Zhuoran Yang · Zhaoran Wang · Jason Lee -
2023 Poster: Multi-task Representation Learning for Pure Exploration in Linear Bandits »
Yihan Du · Longbo Huang · Wen Sun -
2023 Poster: Distributional Offline Policy Evaluation with Predictive Error Guarantees »
Runzhe Wu · Masatoshi Uehara · Wen Sun -
2023 Poster: Looped Transformers as Programmable Computers »
Angeliki Giannou · Shashank Rajput · Jy-yong Sohn · Kangwook Lee · Jason Lee · Dimitris Papailiopoulos -
2023 Poster: B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding »
Miruna Oprescu · Jacob Dorn · Marah Ghoummaid · Andrew Jesson · Nathan Kallus · Uri Shalit -
2023 Poster: Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing »
Jikai Jin · Zhiyuan Li · Kaifeng Lyu · Simon Du · Jason Lee -
2022 Poster: Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning approach »
Xuezhou Zhang · Yuda Song · Masatoshi Uehara · Mengdi Wang · Alekh Agarwal · Wen Sun -
2022 Poster: Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning »
Nathan Kallus · Xiaojie Mao · Kaiwen Wang · Zhengyuan Zhou -
2022 Poster: Learning Bellman Complete Representations for Offline Policy Evaluation »
Jonathan Chang · Kaiwen Wang · Nathan Kallus · Wen Sun -
2022 Spotlight: Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning approach »
Xuezhou Zhang · Yuda Song · Masatoshi Uehara · Mengdi Wang · Alekh Agarwal · Wen Sun -
2022 Spotlight: Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning »
Nathan Kallus · Xiaojie Mao · Kaiwen Wang · Zhengyuan Zhou -
2022 Oral: Learning Bellman Complete Representations for Offline Policy Evaluation »
Jonathan Chang · Kaiwen Wang · Nathan Kallus · Wen Sun -
2022 Poster: A Minimax Learning Approach to Off-Policy Evaluation in Confounded Partially Observable Markov Decision Processes »
Chengchun Shi · Masatoshi Uehara · Jiawei Huang · Nan Jiang -
2022 Oral: A Minimax Learning Approach to Off-Policy Evaluation in Confounded Partially Observable Markov Decision Processes »
Chengchun Shi · Masatoshi Uehara · Jiawei Huang · Nan Jiang -
2021 Poster: Fairness of Exposure in Stochastic Bandits »
Luke Lequn Wang · Yiwei Bai · Wen Sun · Thorsten Joachims -
2021 Spotlight: Fairness of Exposure in Stochastic Bandits »
Luke Lequn Wang · Yiwei Bai · Wen Sun · Thorsten Joachims -
2021 Poster: Robust Policy Gradient against Strong Data Corruption »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2021 Poster: Optimal Off-Policy Evaluation from Multiple Logging Policies »
Nathan Kallus · Yuta Saito · Masatoshi Uehara -
2021 Spotlight: Optimal Off-Policy Evaluation from Multiple Logging Policies »
Nathan Kallus · Yuta Saito · Masatoshi Uehara -
2021 Spotlight: Robust Policy Gradient against Strong Data Corruption »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2021 Poster: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Oral: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Poster: PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided Exploration »
Yuda Song · Wen Sun -
2021 Spotlight: PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided Exploration »
Yuda Song · Wen Sun -
2020 Poster: Minimax Weight and Q-Function Learning for Off-Policy Evaluation »
Masatoshi Uehara · Jiawei Huang · Nan Jiang -
2020 Poster: Statistically Efficient Off-Policy Policy Gradients »
Nathan Kallus · Masatoshi Uehara -
2020 Poster: DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training »
Nathan Kallus -
2020 Poster: Efficient Policy Learning from Surrogate-Loss Classification Reductions »
Andrew Bennett · Nathan Kallus -
2020 Poster: Double Reinforcement Learning for Efficient and Robust Off-Policy Evaluation »
Nathan Kallus · Masatoshi Uehara -
2019 Poster: Classifying Treatment Responders Under Causal Effect Monotonicity »
Nathan Kallus -
2019 Oral: Classifying Treatment Responders Under Causal Effect Monotonicity »
Nathan Kallus -
2018 Poster: Residual Unfairness in Fair Machine Learning from Prejudiced Data »
Nathan Kallus · Angela Zhou -
2018 Oral: Residual Unfairness in Fair Machine Learning from Prejudiced Data »
Nathan Kallus · Angela Zhou -
2017 Poster: Recursive Partitioning for Personalization using Observational Data »
Nathan Kallus -
2017 Talk: Recursive Partitioning for Personalization using Observational Data »
Nathan Kallus