Timezone: »
Poster
Leveraging Offline Data in Online Reinforcement Learning
Andrew Wagenmaker · Aldo Pacchiano
Two central paradigms have emerged in the reinforcement learning (RL) community: online RL and offline RL. In the online RL setting, the agent has no prior knowledge of the environment, and must interact with it in order to find an $\epsilon$-optimal policy. In the offline RL setting, the learner instead has access to a fixed dataset to learn from, but is unable to otherwise interact with the environment, and must obtain the best policy it can from this offline data. Practical scenarios often motivate an intermediate setting: if we have some set of offline data and may also interact with the environment, how can we best use the offline data to minimize the number of online interactions necessary to learn an $\epsilon$-optimal policy. In this work, we consider this setting, which we call the FineTuneRL setting, for MDPs with linear structure. We characterize the necessary number of online samples needed in this setting given access to some offline dataset, and develop an algorithm, FTPedel, which is provably optimal, up to $H$ factors. We show through an explicit example that combining offline data with online interactions can lead to a provable improvement over either purely offline or purely online RL. Finally, our results illustrate the distinction between verifiable learning, the typical setting considered in online RL, and unverifiable learning, the setting often considered in offline RL, and show that there is a formal separation between these regimes.
Author Information
Andrew Wagenmaker (University of Washington)
Aldo Pacchiano (Broad Institute)
More from the Same Authors
-
2021 : Sample Efficient Reinforcement Learning In Continuous State Spaces: A Perspective Beyond Linearity »
Dhruv Malik · Aldo Pacchiano · Vishwak Srinivasan · Yuanzhi Li -
2021 : Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection »
Matteo Papini · Andrea Tirinzoni · Aldo Pacchiano · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta -
2021 : Estimating Optimal Policy Value in Linear Contextual Bandits beyond Gaussianity »
Jonathan Lee · Weihao Kong · Aldo Pacchiano · Vidya Muthukumar · Emma Brunskill -
2021 : Meta Learning MDPs with linear transition models »
Robert Müller · Aldo Pacchiano · Jack Parker-Holder -
2021 : On the Theory of Reinforcement Learning with Once-per-Episode Feedback »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan -
2023 : Experiment Planning with Function Approximation »
Aldo Pacchiano · Jonathan Lee · Emma Brunskill -
2023 : Anytime Model Selection in Linear Bandits »
Parnian Kassraie · Aldo Pacchiano · Nicolas Emmenegger · Andreas Krause -
2023 : Undo Maps: A Tool for Adapting Policies to Perceptual Distortions »
Abhi Gupta · Ted Moskovitz · David Alvarez-Melis · Aldo Pacchiano -
2023 : In-Context Decision-Making from Supervised Pretraining »
Jonathan Lee · Annie Xie · Aldo Pacchiano · Yash Chandak · Chelsea Finn · Ofir Nachum · Emma Brunskill -
2023 : Experiment Planning with Function Approximation »
Aldo Pacchiano · Jonathan Lee · Emma Brunskill -
2023 : Anytime Model Selection in Linear Bandits »
Parnian Kassraie · Aldo Pacchiano · Nicolas Emmenegger · Andreas Krause -
2022 Poster: First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach »
Andrew Wagenmaker · Yifang Chen · Max Simchowitz · Simon Du · Kevin Jamieson -
2022 Poster: Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes »
Andrew Wagenmaker · Yifang Chen · Max Simchowitz · Simon Du · Kevin Jamieson -
2022 Spotlight: Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes »
Andrew Wagenmaker · Yifang Chen · Max Simchowitz · Simon Du · Kevin Jamieson -
2022 Oral: First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach »
Andrew Wagenmaker · Yifang Chen · Max Simchowitz · Simon Du · Kevin Jamieson -
2022 Poster: Online Nonsubmodular Minimization with Delayed Costs: From Full Information to Bandit Feedback »
Tianyi Lin · Aldo Pacchiano · Yaodong Yu · Michael Jordan -
2022 Spotlight: Online Nonsubmodular Minimization with Delayed Costs: From Full Information to Bandit Feedback »
Tianyi Lin · Aldo Pacchiano · Yaodong Yu · Michael Jordan -
2021 : On the Theory of Reinforcement Learning with Once-per-Episode Feedback »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan -
2021 Poster: Task-Optimal Exploration in Linear Dynamical Systems »
Andrew Wagenmaker · Max Simchowitz · Kevin Jamieson -
2021 Poster: Sample Efficient Reinforcement Learning In Continuous State Spaces: A Perspective Beyond Linearity »
Dhruv Malik · Aldo Pacchiano · Vishwak Srinivasan · Yuanzhi Li -
2021 Poster: Dynamic Balancing for Model Selection in Bandits and RL »
Ashok Cutkosky · Christoph Dann · Abhimanyu Das · Claudio Gentile · Aldo Pacchiano · Manish Purohit -
2021 Oral: Task-Optimal Exploration in Linear Dynamical Systems »
Andrew Wagenmaker · Max Simchowitz · Kevin Jamieson -
2021 Spotlight: Dynamic Balancing for Model Selection in Bandits and RL »
Ashok Cutkosky · Christoph Dann · Abhimanyu Das · Claudio Gentile · Aldo Pacchiano · Manish Purohit -
2021 Spotlight: Sample Efficient Reinforcement Learning In Continuous State Spaces: A Perspective Beyond Linearity »
Dhruv Malik · Aldo Pacchiano · Vishwak Srinivasan · Yuanzhi Li -
2020 Poster: On Thompson Sampling with Langevin Algorithms »
Eric Mazumdar · Aldo Pacchiano · Yian Ma · Michael Jordan · Peter Bartlett -
2020 Poster: Accelerated Message Passing for Entropy-Regularized MAP Inference »
Jonathan Lee · Aldo Pacchiano · Peter Bartlett · Michael Jordan -
2020 Poster: Stochastic Flows and Geometric Optimization on the Orthogonal Group »
Krzysztof Choromanski · David Cheikhi · Jared Quincy Davis · Valerii Likhosherstov · Achille Nazaret · Achraf Bahamou · Xingyou Song · Mrugank Akarte · Jack Parker-Holder · Jacob Bergquist · Yuan Gao · Aldo Pacchiano · Tamas Sarlos · Adrian Weller · Vikas Sindhwani -
2020 Poster: Learning to Score Behaviors for Guided Policy Optimization »
Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Krzysztof Choromanski · Anna Choromanska · Michael Jordan -
2020 Poster: Ready Policy One: World Building Through Active Learning »
Philip Ball · Jack Parker-Holder · Aldo Pacchiano · Krzysztof Choromanski · Stephen Roberts -
2019 Poster: Online learning with kernel losses »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett -
2019 Oral: Online learning with kernel losses »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett