Timezone: »

Controllability-Aware Unsupervised Skill Discovery
Seohong Park · Kimin Lee · Youngwoon Lee · Pieter Abbeel

Wed Jul 26 05:00 PM -- 06:30 PM (PDT) @ Exhibit Hall 1 #812

One of the key capabilities of intelligent agents is the ability to discover useful skills without external supervision. However, the current unsupervised skill discovery methods are often limited to acquiring simple, easy-to-learn skills due to the lack of incentives to discover more complex, challenging behaviors. We introduce a novel unsupervised skill discovery method, Controllability-aware Skill Discovery (CSD), which actively seeks complex, hard-to-control skills without supervision. The key component of CSD is a controllability-aware distance function, which assigns larger values to state transitions that are harder to achieve with the current skills. Combined with distance-maximizing skill discovery, CSD progressively learns more challenging skills over the course of training as our jointly trained distance function reduces rewards for easy-to-achieve skills. Our experimental results in six robotic manipulation and locomotion environments demonstrate that CSD can discover diverse complex skills including object manipulation and locomotion skills with no supervision, significantly outperforming prior unsupervised skill discovery methods. Videos and code are available at https://seohong.me/projects/csd/

Author Information

Seohong Park (University of California, Berkeley)
Kimin Lee (Google)
Youngwoon Lee (University of California, Berkeley)
Pieter Abbeel (UC Berkeley & Covariant)

More from the Same Authors