Timezone: »
Learning unnormalized statistical models (e.g., energy-based models) is computationally challenging due to the complexity of handling the partition function. To eschew this complexity, noise-contrastive estimation (NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise. However, as found in previous works, NCE may perform poorly in many tasks due to its flat loss landscape and slow convergence. In this paper, we study a direct approach for optimizing the negative log-likelihood of unnormalized models from the perspective of compositional optimization. To tackle the partition function, a noise distribution is introduced such that the log partition function can be written as a compositional function whose inner function can be estimated with stochastic samples. Hence, the objective can be optimized by stochastic compositional optimization algorithms. Despite being a simple method, we demonstrate that it is more favorable than NCE by (1) establishing a fast convergence rate and quantifying its dependence on the noise distribution through the variance of stochastic estimators; (2) developing better results for one-dimensional Gaussian mean estimation by showing our objective has a much favorable loss landscape and hence our method enjoys faster convergence; (3) demonstrating better performance on multiple applications, including density estimation, out-of-distribution detection, and real image generation.
Author Information
Wei Jiang (Nanjing University)
Jiayu Qin (State University of New York at Buffalo)
Lingyu Wu (Nanjing University)
Changyou Chen (SUNY Buffalo)
Tianbao Yang (Texas A&M University)
Lijun Zhang (Nanjing University)
More from the Same Authors
-
2023 Poster: Provable Multi-instance Deep AUC Maximization with Stochastic Pooling »
Dixian Zhu · Bokun Wang · Zhi Chen · Yaxing Wang · Milan Sonka · Xiaodong Wu · Tianbao Yang -
2023 Poster: Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity »
Dixian Zhu · Yiming Ying · Tianbao Yang -
2023 Poster: Generalization Analysis for Contrastive Representation Learning »
Yunwen Lei · Tianbao Yang · Yiming Ying · Ding-Xuan Zhou -
2023 Poster: Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization »
Zi-Hao Qiu · Quanqi Hu · Zhuoning Yuan · Denny Zhou · Lijun Zhang · Tianbao Yang -
2023 Poster: Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated Learning via Class-Imbalance Reduction »
Jianyi Zhang · Ang Li · Minxue Tang · Jingwei Sun · Xiang Chen · Fan Zhang · Changyou Chen · Yiran Chen · Hai Li -
2023 Poster: Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization »
SIJIA CHEN · Wei-Wei Tu · Peng Zhao · Lijun Zhang -
2023 Poster: Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization »
Quanqi Hu · Zi-Hao Qiu · Zhishuai Guo · Lijun Zhang · Tianbao Yang -
2023 Poster: FeDXL: Provable Federated Learning for Deep X-Risk Optimization »
Zhishuai Guo · Rong Jin · Jiebo Luo · Tianbao Yang -
2022 Poster: Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance »
Zhuoning Yuan · Yuexin Wu · Zi-Hao Qiu · Xianzhi Du · Lijun Zhang · Denny Zhou · Tianbao Yang -
2022 Poster: A Simple yet Universal Strategy for Online Convex Optimization »
Lijun Zhang · Guanghui Wang · Jinfeng Yi · Tianbao Yang -
2022 Oral: A Simple yet Universal Strategy for Online Convex Optimization »
Lijun Zhang · Guanghui Wang · Jinfeng Yi · Tianbao Yang -
2022 Spotlight: Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance »
Zhuoning Yuan · Yuexin Wu · Zi-Hao Qiu · Xianzhi Du · Lijun Zhang · Denny Zhou · Tianbao Yang -
2022 Poster: GraphFM: Improving Large-Scale GNN Training via Feature Momentum »
Haiyang Yu · Limei Wang · Bokun Wang · Meng Liu · Tianbao Yang · Shuiwang Ji -
2022 Poster: Optimal Algorithms for Stochastic Multi-Level Compositional Optimization »
Wei Jiang · Bokun Wang · Yibo Wang · Lijun Zhang · Tianbao Yang -
2022 Poster: Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence »
Zi-Hao Qiu · Quanqi Hu · Yongjian Zhong · Lijun Zhang · Tianbao Yang -
2022 Poster: Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications »
Bokun Wang · Tianbao Yang -
2022 Spotlight: GraphFM: Improving Large-Scale GNN Training via Feature Momentum »
Haiyang Yu · Limei Wang · Bokun Wang · Meng Liu · Tianbao Yang · Shuiwang Ji -
2022 Spotlight: Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence »
Zi-Hao Qiu · Quanqi Hu · Yongjian Zhong · Lijun Zhang · Tianbao Yang -
2022 Spotlight: Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications »
Bokun Wang · Tianbao Yang -
2022 Spotlight: Optimal Algorithms for Stochastic Multi-Level Compositional Optimization »
Wei Jiang · Bokun Wang · Yibo Wang · Lijun Zhang · Tianbao Yang -
2022 Poster: When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee »
Dixian Zhu · Gang Li · Bokun Wang · Xiaodong Wu · Tianbao Yang -
2022 Spotlight: When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee »
Dixian Zhu · Gang Li · Bokun Wang · Xiaodong Wu · Tianbao Yang -
2021 Poster: Stability and Generalization of Stochastic Gradient Methods for Minimax Problems »
Yunwen Lei · Zhenhuan Yang · Tianbao Yang · Yiming Ying -
2021 Oral: Stability and Generalization of Stochastic Gradient Methods for Minimax Problems »
Yunwen Lei · Zhenhuan Yang · Tianbao Yang · Yiming Ying -
2021 Poster: Federated Deep AUC Maximization for Hetergeneous Data with a Constant Communication Complexity »
Zhuoning Yuan · Zhishuai Guo · Yi Xu · Yiming Ying · Tianbao Yang -
2021 Spotlight: Federated Deep AUC Maximization for Hetergeneous Data with a Constant Communication Complexity »
Zhuoning Yuan · Zhishuai Guo · Yi Xu · Yiming Ying · Tianbao Yang -
2020 Poster: Projection-free Distributed Online Convex Optimization with $O(\sqrt{T})$ Communication Complexity »
Yuanyu Wan · Wei-Wei Tu · Lijun Zhang -
2020 Poster: Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks »
Zhishuai Guo · Mingrui Liu · Zhuoning Yuan · Li Shen · Wei Liu · Tianbao Yang -
2020 Poster: Variance Reduction in Stochastic Particle-Optimization Sampling »
Jianyi Zhang · Yang Zhao · Changyou Chen -
2020 Poster: Quadratically Regularized Subgradient Methods for Weakly Convex Optimization with Weakly Convex Constraints »
Runchao Ma · Qihang Lin · Tianbao Yang -
2020 Poster: Stochastic Optimization for Non-convex Inf-Projection Problems »
Yan Yan · Yi Xu · Lijun Zhang · Wang Xiaoyu · Tianbao Yang -
2019 Poster: Adaptive Regret of Convex and Smooth Functions »
Lijun Zhang · Tie-Yan Liu · Zhi-Hua Zhou -
2019 Oral: Adaptive Regret of Convex and Smooth Functions »
Lijun Zhang · Tie-Yan Liu · Zhi-Hua Zhou -
2019 Poster: Optimal Algorithms for Lipschitz Bandits with Heavy-tailed Rewards »
Shiyin Lu · Guanghui Wang · Yao Hu · Lijun Zhang -
2019 Poster: Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence »
Yi Xu · Qi Qi · Qihang Lin · rong jin · Tianbao Yang -
2019 Oral: Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence »
Yi Xu · Qi Qi · Qihang Lin · rong jin · Tianbao Yang -
2019 Oral: Optimal Algorithms for Lipschitz Bandits with Heavy-tailed Rewards »
Shiyin Lu · Guanghui Wang · Yao Hu · Lijun Zhang -
2019 Poster: Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number »
Zaiyi Chen · Yi Xu · Haoyuan Hu · Tianbao Yang -
2019 Oral: Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number »
Zaiyi Chen · Yi Xu · Haoyuan Hu · Tianbao Yang -
2018 Poster: Dynamic Regret of Strongly Adaptive Methods »
Lijun Zhang · Tianbao Yang · rong jin · Zhi-Hua Zhou -
2018 Poster: SADAGRAD: Strongly Adaptive Stochastic Gradient Methods »
Zaiyi Chen · Yi Xu · Enhong Chen · Tianbao Yang -
2018 Poster: Policy Optimization as Wasserstein Gradient Flows »
RUIYI (ROY) ZHANG · Changyou Chen · Chunyuan Li · Lawrence Carin -
2018 Poster: Level-Set Methods for Finite-Sum Constrained Convex Optimization »
Qihang Lin · Runchao Ma · Tianbao Yang -
2018 Oral: Policy Optimization as Wasserstein Gradient Flows »
RUIYI (ROY) ZHANG · Changyou Chen · Chunyuan Li · Lawrence Carin -
2018 Oral: Level-Set Methods for Finite-Sum Constrained Convex Optimization »
Qihang Lin · Runchao Ma · Tianbao Yang -
2018 Oral: SADAGRAD: Strongly Adaptive Stochastic Gradient Methods »
Zaiyi Chen · Yi Xu · Enhong Chen · Tianbao Yang -
2018 Oral: Dynamic Regret of Strongly Adaptive Methods »
Lijun Zhang · Tianbao Yang · rong jin · Zhi-Hua Zhou -
2018 Poster: Fast Stochastic AUC Maximization with $O(1/n)$-Convergence Rate »
Mingrui Liu · Xiaoxuan Zhang · Zaiyi Chen · Xiaoyu Wang · Tianbao Yang -
2018 Oral: Fast Stochastic AUC Maximization with $O(1/n)$-Convergence Rate »
Mingrui Liu · Xiaoxuan Zhang · Zaiyi Chen · Xiaoyu Wang · Tianbao Yang -
2018 Poster: Continuous-Time Flows for Efficient Inference and Density Estimation »
Changyou Chen · Chunyuan Li · Liquan Chen · Wenlin Wang · Yunchen Pu · Lawrence Carin -
2018 Oral: Continuous-Time Flows for Efficient Inference and Density Estimation »
Changyou Chen · Chunyuan Li · Liquan Chen · Wenlin Wang · Yunchen Pu · Lawrence Carin -
2017 Poster: Stochastic Gradient Monomial Gamma Sampler »
Yizhe Zhang · Changyou Chen · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Talk: Stochastic Gradient Monomial Gamma Sampler »
Yizhe Zhang · Changyou Chen · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence »
Yi Xu · Qihang Lin · Tianbao Yang -
2017 Poster: A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates »
Tianbao Yang · Qihang Lin · Lijun Zhang -
2017 Talk: A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates »
Tianbao Yang · Qihang Lin · Lijun Zhang -
2017 Talk: Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence »
Yi Xu · Qihang Lin · Tianbao Yang