Timezone: »
The prediction of molecular properties is a crucial task in the field of material and drug discovery. The potential benefits of using deep learning techniques are reflected in the wealth of recent literature. Still, these techniques are faced with a common challenge in practice: Labeled data are limited by the cost of manual extraction from literature and laborious experimentation. In this work, we propose a data-efficient property predictor by utilizing a learnable hierarchical molecular grammar that can generate molecules from grammar production rules. Such a grammar induces an explicit geometry of the space of molecular graphs, which provides an informative prior on molecular structural similarity. The property prediction is performed using graph neural diffusion over the grammar-induced geometry. On both small and large datasets, our evaluation shows that this approach outperforms a wide spectrum of baselines, including supervised and pre-trained graph neural networks. We include a detailed ablation study and further analysis of our solution, showing its effectiveness in cases with extremely limited data.
Author Information
Minghao Guo (MIT)
Veronika Thost (IBM Research)
Samuel Song (Massachusetts Institute of Technology)
Adithya Balachandran (Massachusetts Institute of Technology)
Payel Das (IBM Research AI)
Jie Chen (MIT-IBM Watson AI Lab, IBM Research)
Wojciech Matusik (MIT)
More from the Same Authors
-
2022 : Protein Representation Learning by Geometric Structure Pretraining »
Zuobai Zhang · Zuobai Zhang · Minghao Xu · Minghao Xu · Arian Jamasb · Arian Jamasb · Vijil Chenthamarakshan · Vijil Chenthamarakshan · Aurelie Lozano · Payel Das · Payel Das · Jian Tang · Jian Tang -
2023 : On Robustness-Accuracy Characterization of Large Language Models using Synthetic Datasets »
Ching-Yun (Irene) Ko · Pin-Yu Chen · Payel Das · Yung-Sung Chuang · Luca Daniel -
2023 : On Robustness-Accuracy Characterization of Large Language Models using Synthetic Datasets »
Ching-Yun (Irene) Ko · Pin-Yu Chen · Payel Das · Yung-Sung Chuang · Luca Daniel -
2023 Poster: GC-Flow: A Graph-Based Flow Network for Effective Clustering »
Tianchun Wang · Farzaneh Mirzazadeh · Xiang Zhang · Jie Chen -
2023 Poster: Compressed Decentralized Proximal Stochastic Gradient Method for Nonconvex Composite Problems with Heterogeneous Data »
Yonggui Yan · Jie Chen · Pin-Yu Chen · Xiaodong Cui · Songtao Lu · Yangyang Xu -
2023 Poster: Reprogramming Pretrained Language Models for Antibody Sequence Infilling »
Igor Melnyk · Vijil Chenthamarakshan · Pin-Yu Chen · Payel Das · Amit Dhurandhar · Inkit Padhi · Devleena Das -
2023 Poster: A Gromov--Wasserstein Geometric View of Spectrum-Preserving Graph Coarsening »
Yifan Chen · Rentian Yao · Yun Yang · Jie Chen -
2023 Poster: Learning Preconditioners for Conjugate Gradient PDE Solvers »
Yichen Li · Peter Yichen Chen · Tao Du · Wojciech Matusik -
2023 Poster: Learning Neural Constitutive Laws from Motion Observations for Generalizable PDE Dynamics »
Pingchuan Ma · Peter Yichen Chen · Bolei Deng · Josh Tenenbaum · Tao Du · Chuang Gan · Wojciech Matusik -
2022 Poster: Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models »
Elvis Nava · John Zhang · Mike Yan Michelis · Tao Du · Pingchuan Ma · Benjamin F. Grewe · Wojciech Matusik · Robert Katzschmann -
2022 Spotlight: Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models »
Elvis Nava · John Zhang · Mike Yan Michelis · Tao Du · Pingchuan Ma · Benjamin F. Grewe · Wojciech Matusik · Robert Katzschmann -
2022 Poster: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Spotlight: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2021 Poster: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
yue cao · Payel Das · Vijil Chenthamarakshan · Pin-Yu Chen · Igor Melnyk · Yang Shen -
2021 Spotlight: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
yue cao · Payel Das · Vijil Chenthamarakshan · Pin-Yu Chen · Igor Melnyk · Yang Shen -
2020 Poster: Efficient Continuous Pareto Exploration in Multi-Task Learning »
Pingchuan Ma · Tao Du · Wojciech Matusik -
2020 Poster: Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control »
Jie Xu · Yunsheng Tian · Pingchuan Ma · Daniela Rus · Shinjiro Sueda · Wojciech Matusik -
2019 Poster: DAG-GNN: DAG Structure Learning with Graph Neural Networks »
Yue Yu · Jie Chen · Tian Gao · Mo Yu -
2019 Oral: DAG-GNN: DAG Structure Learning with Graph Neural Networks »
Yue Yu · Jie Chen · Tian Gao · Mo Yu -
2019 Poster: Neural Inverse Knitting: From Images to Manufacturing Instructions »
Alexandre Kaspar · Tae-Hyun Oh · Liane Makatura · Petr Kellnhofer · Wojciech Matusik -
2019 Oral: Neural Inverse Knitting: From Images to Manufacturing Instructions »
Alexandre Kaspar · Tae-Hyun Oh · Liane Makatura · Petr Kellnhofer · Wojciech Matusik