Timezone: »
We examine concept generalization at a large scale in the natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated, focusing on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up and when the complexity of concepts becomes diverse. At the representational level, we investigate how the complexity varies when a visual concept is mapped to the representation space. Prior literature has shown that two types of complexities (Griffiths & Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun & Firestone, 2021). Leveraging Representativeness of Attribute (RoA), we computationally confirm: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the computational level, we examine how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity outperform those with relatively low subjective complexity in rule-based generalization, while the trend is the opposite in similarity-based generalization.
Author Information
Yu-Zhe Shi (PersLab Research)
Manjie Xu (Beijing Institute of Technology)
John Hopcroft (Department of Computer Science, Cornell University)
Kun He (Huazhong University of Sceince and Technology)
Josh Tenenbaum (MIT)
Joshua Brett Tenenbaum is Professor of Cognitive Science and Computation at the Massachusetts Institute of Technology. He is known for contributions to mathematical psychology and Bayesian cognitive science. He previously taught at Stanford University, where he was the Wasow Visiting Fellow from October 2010 to January 2011. Tenenbaum received his undergraduate degree in physics from Yale University in 1993, and his Ph.D. from MIT in 1999. His work primarily focuses on analyzing probabilistic inference as the engine of human cognition and as a means to develop machine learning.
Song-Chun Zhu (UCLA)
Ying Nian Wu (UCLA)
Wenjuan Han (Beijing Jiaotong University)
Yixin Zhu (Peking University)
More from the Same Authors
-
2023 : PIAT: Parameter Interpolation based Adversarial Training for Image Classification »
Kun He · Xin Liu · Yichen Yang · Zhou Qin · Weigao Wen · Hui Xue' · John Hopcroft -
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Building Community Driven Libraries of Natural Programs »
Leonardo Hernandez Cano · Yewen Pu · Robert Hawkins · Josh Tenenbaum · Armando Solar-Lezama -
2023 : Inferring the Future by Imagining the Past »
Kartik Chandra · Tony Chen · Tzu-Mao Li · Jonathan Ragan-Kelley · Josh Tenenbaum -
2023 : Inferring the Goals of Communicating Agents from Actions and Instructions »
Lance Ying · Tan Zhi-Xuan · Vikash Mansinghka · Josh Tenenbaum -
2023 : The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling probabilistic social inferences from linguistic inputs »
Lance Ying · Katie Collins · Megan Wei · Cedegao Zhang · Tan Zhi-Xuan · Adrian Weller · Josh Tenenbaum · Catherine Wong -
2023 : Inferring the Future by Imagining the Past »
Kartik Chandra · Tony Chen · Tzu-Mao Li · Jonathan Ragan-Kelley · Josh Tenenbaum -
2023 : MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Neural Dialogue Generation »
Shuwen Qiu · Song-Chun Zhu · Zilong Zheng -
2023 Oral: Inferring Relational Potentials in Interacting Systems »
Armand Comas · Yilun Du · Christian Fernandez Lopez · Sandesh Ghimire · Mario Sznaier · Josh Tenenbaum · Octavia Camps -
2023 Poster: Inferring Relational Potentials in Interacting Systems »
Armand Comas · Yilun Du · Christian Fernandez Lopez · Sandesh Ghimire · Mario Sznaier · Josh Tenenbaum · Octavia Camps -
2023 Poster: MEWL: Few-shot multimodal word learning with referential uncertainty »
Guangyuan Jiang · Manjie Xu · Shiji Xin · Wei Liang · Yujia Peng · Chi Zhang · Yixin Zhu -
2023 Poster: Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC »
Yilun Du · Conor Durkan · Robin Strudel · Josh Tenenbaum · Sander Dieleman · Rob Fergus · Jascha Sohl-Dickstein · Arnaud Doucet · Will Grathwohl -
2023 Poster: Diverse and Faithful Knowledge-Grounded Dialogue Generation via Sequential Posterior Inference »
Yan Xu · Deqian Kong · Dehong Xu · Ziwei Ji · Bo Pang · Pascale FUNG · Ying Nian Wu -
2023 Poster: Learning Neural Constitutive Laws from Motion Observations for Generalizable PDE Dynamics »
Pingchuan Ma · Peter Yichen Chen · Bolei Deng · Josh Tenenbaum · Tao Du · Chuang Gan · Wojciech Matusik -
2022 Poster: Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning »
Aviv Netanyahu · Tianmin Shu · Josh Tenenbaum · Pulkit Agrawal -
2022 Spotlight: Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning »
Aviv Netanyahu · Tianmin Shu · Josh Tenenbaum · Pulkit Agrawal -
2022 Poster: COAT: Measuring Object Compositionality in Emergent Representations »
Sirui Xie · Ari Morcos · Song-Chun Zhu · Shanmukha Ramakrishna Vedantam -
2022 Poster: Planning with Diffusion for Flexible Behavior Synthesis »
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine -
2022 Spotlight: COAT: Measuring Object Compositionality in Emergent Representations »
Sirui Xie · Ari Morcos · Song-Chun Zhu · Shanmukha Ramakrishna Vedantam -
2022 Oral: Planning with Diffusion for Flexible Behavior Synthesis »
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine -
2022 Poster: Learning Iterative Reasoning through Energy Minimization »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2022 Poster: Latent Diffusion Energy-Based Model for Interpretable Text Modelling »
Peiyu Yu · Sirui Xie · Xiaojian Ma · Baoxiong Jia · Bo Pang · Ruiqi Gao · Yixin Zhu · Song-Chun Zhu · Ying Nian Wu -
2022 Poster: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: Learning Iterative Reasoning through Energy Minimization »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2022 Spotlight: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: Latent Diffusion Energy-Based Model for Interpretable Text Modelling »
Peiyu Yu · Sirui Xie · Xiaojian Ma · Baoxiong Jia · Bo Pang · Ruiqi Gao · Yixin Zhu · Song-Chun Zhu · Ying Nian Wu -
2021 : [12:02 - 12:47 PM UTC] Invited Talk 1: Explainable AI: How Machines Gain Justified Trust from Humans »
Song-Chun Zhu -
2021 Workshop: ICML Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI »
Quanshi Zhang · Tian Han · Lixin Fan · Zhanxing Zhu · Hang Su · Ying Nian Wu -
2021 Poster: Latent Space Energy-Based Model of Symbol-Vector Coupling for Text Generation and Classification »
Bo Pang · Ying Nian Wu -
2021 Spotlight: Latent Space Energy-Based Model of Symbol-Vector Coupling for Text Generation and Classification »
Bo Pang · Ying Nian Wu -
2021 Poster: A large-scale benchmark for few-shot program induction and synthesis »
Ferran Alet · Javier Lopez-Contreras · James Koppel · Maxwell Nye · Armando Solar-Lezama · Tomas Lozano-Perez · Leslie Kaelbling · Josh Tenenbaum -
2021 Spotlight: A large-scale benchmark for few-shot program induction and synthesis »
Ferran Alet · Javier Lopez-Contreras · James Koppel · Maxwell Nye · Armando Solar-Lezama · Tomas Lozano-Perez · Leslie Kaelbling · Josh Tenenbaum -
2021 Poster: AGENT: A Benchmark for Core Psychological Reasoning »
Tianmin Shu · Abhishek Bhandwaldar · Chuang Gan · Kevin Smith · Shari Liu · Dan Gutfreund · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2021 Spotlight: AGENT: A Benchmark for Core Psychological Reasoning »
Tianmin Shu · Abhishek Bhandwaldar · Chuang Gan · Kevin Smith · Shari Liu · Dan Gutfreund · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2021 Poster: Improved Contrastive Divergence Training of Energy-Based Models »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2021 Poster: Leveraging Language to Learn Program Abstractions and Search Heuristics »
Catherine Wong · Kevin Ellis · Josh Tenenbaum · Jacob Andreas -
2021 Spotlight: Leveraging Language to Learn Program Abstractions and Search Heuristics »
Catherine Wong · Kevin Ellis · Josh Tenenbaum · Jacob Andreas -
2021 Spotlight: Improved Contrastive Divergence Training of Energy-Based Models »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2020 Poster: Visual Grounding of Learned Physical Models »
Yunzhu Li · Toru Lin · Kexin Yi · Daniel Bear · Daniel Yamins · Jiajun Wu · Josh Tenenbaum · Antonio Torralba -
2020 Poster: Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning »
Qing Li · Siyuan Huang · Yining Hong · Yixin Chen · Ying Nian Wu · Song-Chun Zhu -
2019 Poster: Learning to Infer Program Sketches »
Maxwell Nye · Luke Hewitt · Josh Tenenbaum · Armando Solar-Lezama -
2019 Oral: Learning to Infer Program Sketches »
Maxwell Nye · Luke Hewitt · Josh Tenenbaum · Armando Solar-Lezama -
2019 Poster: Infinite Mixture Prototypes for Few-shot Learning »
Kelsey Allen · Evan Shelhamer · Hanul Shin · Josh Tenenbaum -
2019 Oral: Infinite Mixture Prototypes for Few-shot Learning »
Kelsey Allen · Evan Shelhamer · Hanul Shin · Josh Tenenbaum -
2019 Poster: Neurally-Guided Structure Inference »
Sidi Lu · Jiayuan Mao · Josh Tenenbaum · Jiajun Wu -
2019 Oral: Neurally-Guided Structure Inference »
Sidi Lu · Jiayuan Mao · Josh Tenenbaum · Jiajun Wu -
2018 Poster: Generalized Earley Parser: Bridging Symbolic Grammars and Sequence Data for Future Prediction »
Siyuan Qi · Baoxiong Jia · Song-Chun Zhu -
2018 Invited Talk: Building Machines that Learn and Think Like People »
Josh Tenenbaum -
2018 Oral: Generalized Earley Parser: Bridging Symbolic Grammars and Sequence Data for Future Prediction »
Siyuan Qi · Baoxiong Jia · Song-Chun Zhu