Timezone: »
Simulating rare events, such as the transformation of a reactant into a product in a chemical reaction typically requires enhanced sampling techniques that rely on heuristically chosen collective variables (CVs). We propose using differentiable simulations (DiffSim) for the discovery and enhanced sampling of chemical transformations without a need to resort to preselected CVs, using only a distance metric. Reaction path discovery and estimation of the biasing potential that enhances the sampling are merged into a single end-to-end problem that is solved by path-integral optimization. This is achieved by introducing multiple improvements over standard DiffSim such as partial backpropagation and graph mini-batching making DiffSim training stable and efficient. The potential of DiffSim is demonstrated in the successful discovery of transition paths for the Muller-Brown model potential as well as a benchmark chemical system - alanine dipeptide.
Author Information
Martin Šípka (Charles University | MIT)
Johannes Dietschreit (Massachusetts Institute of Technology)
Lukáš Grajciar (Charles University Prague)
Rafael Gomez-Bombarelli (MIT)
More from the Same Authors
-
2023 : Optimizing probability of barrier crossing with differentiable simulators »
Martin Šípka · Johannes Dietschreit · Michal Pavelka · Lukáš Grajciar · Rafael Gomez-Bombarelli -
2023 Poster: Chemically Transferable Generative Backmapping of Coarse-Grained Proteins »
Soojung Yang · Rafael Gomez-Bombarelli -
2022 Workshop: Workshop on Machine Learning in Computational Design »
Andrew Spielberg · Caitlin Mueller · Lydia Chilton · Rafael Gomez-Bombarelli · Vladimir Kim · Daniel Ritchie · Wengong Jin -
2022 Poster: Generative Coarse-Graining of Molecular Conformations »
Wujie Wang · Minkai Xu · Chen Cai · Benjamin Kurt Miller · Tess Smidt · Yusu Wang · Jian Tang · Rafael Gomez-Bombarelli -
2022 Spotlight: Generative Coarse-Graining of Molecular Conformations »
Wujie Wang · Minkai Xu · Chen Cai · Benjamin Kurt Miller · Tess Smidt · Yusu Wang · Jian Tang · Rafael Gomez-Bombarelli -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang