Timezone: »
Poster
Optimal Rates and Efficient Algorithms for Online Bayesian Persuasion
Martino Bernasconi · Matteo Castiglioni · Andrea Celli · Alberto Marchesi · Francesco Trovò · Nicola Gatti
Bayesian persuasion studies how an informed sender should influence beliefs of rational receivers that take decisions through Bayesian updating of a common prior. We focus on the online Bayesian persuasion framework, in which the sender repeatedly faces one or more receivers with unknown and adversarially selected types. First, we show how to obtain a tight $\tilde O(T^{1/2})$ regret bound in the case in which the sender faces a single receiver and has bandit feedback, improving over the best previously known bound of $\tilde O(T^{4/5})$. Then, we provide the first no-regret guarantees for the multi-receiver setting under bandit feedback. Finally, we show how to design no-regret algorithms with polynomial per-iteration running time by exploiting type reporting, thereby circumventing known complexity results on online Bayesian persuasion. We provide efficient algorithms guaranteeing a $O(T^{1/2})$ regret upper bound both in the single- and multi-receiver scenario when type reporting is allowed.
Author Information
Martino Bernasconi (Politecnico di Milano)
Matteo Castiglioni (Politecnico di Milano)
Andrea Celli (Bocconi University)
Alberto Marchesi (Politecnico di Milano)
Francesco Trovò (Politecnico di Milano)
Nicola Gatti (Politecnico di Milano)
More from the Same Authors
-
2022 : Stochastic Rising Bandits for Online Model Selection »
Alberto Maria Metelli · Francesco Trovò · Matteo Pirola · Marcello Restelli -
2023 : A Best Arm Identification Approach for Stochastic Rising Bandits »
Alessandro Montenegro · Marco Mussi · Francesco Trovò · Marcello Restelli · Alberto Maria Metelli -
2023 Poster: Online Mechanism Design for Information Acquisition »
Federico Cacciamani · Matteo Castiglioni · Nicola Gatti -
2023 Poster: Constrained Phi-Equilibria »
Martino Bernasconi · Matteo Castiglioni · Alberto Marchesi · Francesco Trovò · Nicola Gatti -
2022 Poster: Online Learning with Knapsacks: the Best of Both Worlds »
Matteo Castiglioni · Andrea Celli · Christian Kroer -
2022 Poster: Safe Learning in Tree-Form Sequential Decision Making: Handling Hard and Soft Constraints »
Martino Bernasconi · Federico Cacciamani · Matteo Castiglioni · Alberto Marchesi · Nicola Gatti · Francesco Trovò -
2022 Poster: A Marriage between Adversarial Team Games and 2-player Games: Enabling Abstractions, No-regret Learning, and Subgame Solving »
Luca Carminati · Federico Cacciamani · Marco Ciccone · Nicola Gatti -
2022 Spotlight: Online Learning with Knapsacks: the Best of Both Worlds »
Matteo Castiglioni · Andrea Celli · Christian Kroer -
2022 Spotlight: A Marriage between Adversarial Team Games and 2-player Games: Enabling Abstractions, No-regret Learning, and Subgame Solving »
Luca Carminati · Federico Cacciamani · Marco Ciccone · Nicola Gatti -
2022 Spotlight: Safe Learning in Tree-Form Sequential Decision Making: Handling Hard and Soft Constraints »
Martino Bernasconi · Federico Cacciamani · Matteo Castiglioni · Alberto Marchesi · Nicola Gatti · Francesco Trovò -
2022 Poster: Stochastic Rising Bandits »
Alberto Maria Metelli · Francesco Trovò · Matteo Pirola · Marcello Restelli -
2022 Spotlight: Stochastic Rising Bandits »
Alberto Maria Metelli · Francesco Trovò · Matteo Pirola · Marcello Restelli -
2021 Poster: Multi-Receiver Online Bayesian Persuasion »
Matteo Castiglioni · Alberto Marchesi · Andrea Celli · Nicola Gatti -
2021 Spotlight: Multi-Receiver Online Bayesian Persuasion »
Matteo Castiglioni · Alberto Marchesi · Andrea Celli · Nicola Gatti -
2021 Poster: Connecting Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation: Faster Algorithms and Positive Complexity Results »
Gabriele Farina · Andrea Celli · Nicola Gatti · Tuomas Sandholm -
2021 Spotlight: Connecting Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation: Faster Algorithms and Positive Complexity Results »
Gabriele Farina · Andrea Celli · Nicola Gatti · Tuomas Sandholm