Timezone: »
Poster
Relevant Walk Search for Explaining Graph Neural Networks
Ping Xiong · Thomas Schnake · Michael Gastegger · Grégoire Montavon · Klaus-robert Mueller · Shinichi Nakajima
Graph Neural Networks (GNNs) have become important machine learning tools for graph analysis, and its explainability is crucial for safety, fairness, and robustness. Layer-wise relevance propagation for GNNs (GNN-LRP) evaluates the relevance of walks to reveal important information flows in the network, and provides higher-order explanations, which have been shown to be superior to the lower-order, i.e., node-/edge-level, explanations. However, identifying relevant walks by GNN-LRP requires exponential computational complexity with respect to the network depth, which we will remedy in this paper. Specifically, we propose polynomial-time algorithms for finding top-$K$ relevant walks, which drastically reduces the computation and thus increases the applicability of GNN-LRP to large-scale problems. Our proposed algorithms are based on the max-product algorithm---a common tool for finding the maximum likelihood configurations in probabilistic graphical models---and can find the most relevant walks exactly at the neuron level and approximately at the node level. Our experiments demonstrate the performance of our algorithms at scale and their utility across application domains, i.e., on epidemiology, molecular, and natural language benchmarks. We provide our codes under github.com/xiong-ping/rel_walk_gnnlrp.
Author Information
Ping Xiong (Technical University Berlin)
Thomas Schnake (TU Berlin)
Michael Gastegger (TU Berlin)
Grégoire Montavon (Freie Universität Berlin)
Klaus-robert Mueller (Technische Universität Berlin)
Shinichi Nakajima (TU Berlin)
More from the Same Authors
-
2022 Poster: Efficient Computation of Higher-Order Subgraph Attribution via Message Passing »
Ping Xiong · Thomas Schnake · Grégoire Montavon · Klaus-robert Mueller · Shinichi Nakajima -
2022 Poster: XAI for Transformers: Better Explanations through Conservative Propagation »
Ameen Ali · Thomas Schnake · Oliver Eberle · Grégoire Montavon · Klaus-robert Mueller · Lior Wolf -
2022 Spotlight: Efficient Computation of Higher-Order Subgraph Attribution via Message Passing »
Ping Xiong · Thomas Schnake · Grégoire Montavon · Klaus-robert Mueller · Shinichi Nakajima -
2022 Spotlight: XAI for Transformers: Better Explanations through Conservative Propagation »
Ameen Ali · Thomas Schnake · Oliver Eberle · Grégoire Montavon · Klaus-robert Mueller · Lior Wolf -
2021 : [12:52 - 01:45 PM UTC] Invited Talk 2: Toward Explainable AI »
Klaus-robert Mueller · Wojciech Samek · Grégoire Montavon -
2021 Poster: Equivariant message passing for the prediction of tensorial properties and molecular spectra »
Kristof T Schütt · Oliver Unke · Michael Gastegger -
2021 Spotlight: Equivariant message passing for the prediction of tensorial properties and molecular spectra »
Kristof T Schütt · Oliver Unke · Michael Gastegger -
2020 Workshop: XXAI: Extending Explainable AI Beyond Deep Models and Classifiers »
Wojciech Samek · Andreas HOLZINGER · Ruth Fong · Taesup Moon · Klaus-robert Mueller -
2020 Poster: Fairwashing explanations with off-manifold detergent »
Christopher Anders · Plamen Pasliev · Ann-Kathrin Dombrowski · Klaus-robert Mueller · Pan Kessel -
2017 Poster: Minimizing Trust Leaks for Robust Sybil Detection »
János Höner · Shinichi Nakajima · Alexander Bauer · Klaus-robert Mueller · Nico Görnitz -
2017 Talk: Minimizing Trust Leaks for Robust Sybil Detection »
János Höner · Shinichi Nakajima · Alexander Bauer · Klaus-robert Mueller · Nico Görnitz