Timezone: »
In this paper, we consider federated Q-learning, which aims to learn an optimal Q-function by periodically aggregating local Q-estimates trained on local data alone. Focusing on infinite-horizon tabular Markov decision processes, we provide sample complexity guarantees for both the synchronous and asynchronous variants of federated Q-learning. In both cases, our bounds exhibit a linear speedup with respect to the number of agents and sharper dependencies on other salient problem parameters. Moreover, existing approaches to federated Q-learning adopt an equally-weighted averaging of local Q-estimates, which can be highly sub-optimal in the asynchronous setting since the local trajectories can be highly heterogeneous due to different local behavior policies. Existing sample complexity scales inverse proportionally to the minimum entry of the stationary state-action occupancy distributions over all agents, requiring that every agent covers the entire state-action space. Instead, we propose a novel importance averaging algorithm, giving larger weights to more frequently visited state-action pairs. The improved sample complexity scales inverse proportionally to the minimum entry of the average stationary state-action occupancy distribution of all agents, thus only requiring the agents collectively cover the entire state-action space, unveiling the blessing of heterogeneity.
Author Information
Jiin Woo (Carnegie Mellon University)
Gauri Joshi (Carnegie Mellon University)
Yuejie Chi (CMU)
More from the Same Authors
-
2023 : Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation »
Wenhao Ding · Laixi Shi · Yuejie Chi · Ding Zhao -
2023 : Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 : Identification of Nonlinear Latent Hierarchical Causal Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 : Towards a Theoretical and Practical Understanding of One-Shot Federated Learning with Fisher Information »
Divyansh Jhunjhunwala · Shiqiang Wang · Gauri Joshi -
2023 : Towards Structured Sparsity in Transformers for Efficient Inference »
Harry Dong · Beidi Chen · Yuejie Chi -
2023 Poster: On the Convergence of Federated Averaging with Cyclic Client Participation »
Yae Jee Cho · PRANAY SHARMA · Gauri Joshi · Zheng Xu · Satyen Kale · Tong Zhang -
2023 Poster: The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing »
Xingyu Xu · Yandi Shen · Yuejie Chi · Cong Ma -
2022 Poster: Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity »
Laixi Shi · Gen Li · Yuting Wei · Yuxin Chen · Yuejie Chi -
2022 Poster: Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling »
sajad khodadadian · PRANAY SHARMA · Gauri Joshi · Siva Maguluri -
2022 Spotlight: Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity »
Laixi Shi · Gen Li · Yuting Wei · Yuxin Chen · Yuejie Chi -
2022 Oral: Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling »
sajad khodadadian · PRANAY SHARMA · Gauri Joshi · Siva Maguluri -
2022 Poster: Federated Minimax Optimization: Improved Convergence Analyses and Algorithms »
PRANAY SHARMA · Rohan Panda · Gauri Joshi · Pramod K Varshney -
2022 Spotlight: Federated Minimax Optimization: Improved Convergence Analyses and Algorithms »
PRANAY SHARMA · Rohan Panda · Gauri Joshi · Pramod K Varshney -
2021 : Closing Remarks »
Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu -
2021 Workshop: International Workshop on Federated Learning for User Privacy and Data Confidentiality in Conjunction with ICML 2021 (FL-ICML'21) »
Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Shiqiang Wang · Han Yu -
2021 : Opening Remarks »
Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu -
2021 Poster: Tightening the Dependence on Horizon in the Sample Complexity of Q-Learning »
Gen Li · Changxiao Cai · Yuxin Chen · Yuantao Gu · Yuting Wei · Yuejie Chi -
2021 Spotlight: Tightening the Dependence on Horizon in the Sample Complexity of Q-Learning »
Gen Li · Changxiao Cai · Yuxin Chen · Yuantao Gu · Yuting Wei · Yuejie Chi -
2020 : Closing remarks »
Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Ramesh Raskar · Shiqiang Wang · Han Yu -
2020 : Opening remarks »
Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Ramesh Raskar · Shiqiang Wang · Han Yu -
2020 Workshop: Federated Learning for User Privacy and Data Confidentiality »
Nathalie Baracaldo · Olivia Choudhury · Olivia Choudhury · Gauri Joshi · Ramesh Raskar · Gauri Joshi · Shiqiang Wang · Han Yu -
2019 Workshop: Coding Theory For Large-scale Machine Learning »
Viveck Cadambe · Pulkit Grover · Dimitris Papailiopoulos · Gauri Joshi -
2018 Poster: Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval and Matrix Completion »
Cong Ma · Kaizheng Wang · Yuejie Chi · Yuxin Chen -
2018 Oral: Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval and Matrix Completion »
Cong Ma · Kaizheng Wang · Yuejie Chi · Yuxin Chen