Timezone: »
Poster
Is Consensus Acceleration Possible in Decentralized Optimization over Slowly Time-Varying Networks?
Dmitry Metelev · Alexander Rogozin · Dmitry Kovalev · Alexander Gasnikov
We consider decentralized optimization problems where one aims to minimize a sum of convex smooth objective functions distributed between nodes in the network. The links in the network can change from time to time. For the setting when the amount of changes is arbitrary, lower complexity bounds and corresponding optimal algorithms are known, and the consensus acceleration is not possible. However, in practice the magnitude of network changes may be limited. We derive lower complexity bounds for several regimes of velocity of networks changes. Moreover, we show how to obtain accelerated communication rates for a certain class of time-varying graphs using a specific consensus algorithm.
Author Information
Dmitry Metelev (Moscow Institute of Physics and Technology)
Alexander Rogozin (Moscow Institute of Physics and Technology)
Dmitry Kovalev (KAUST)
Alexander Gasnikov (Moscow Institute of Physics and Technology)
More from the Same Authors
-
2021 : Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization over Time-Varying Networks »
Dmitry Kovalev -
2023 Poster: High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance »
Abdurakhmon Sadiev · Marina Danilova · Eduard Gorbunov · Samuel Horváth · Gauthier Gidel · Pavel Dvurechenskii · Alexander Gasnikov · Peter Richtarik -
2022 Poster: The power of first-order smooth optimization for black-box non-smooth problems »
Alexander Gasnikov · Anton Novitskii · Vasilii Novitskii · Farshed Abdukhakimov · Dmitry Kamzolov · Aleksandr Beznosikov · Martin Takac · Pavel Dvurechenskii · Bin Gu -
2022 Spotlight: The power of first-order smooth optimization for black-box non-smooth problems »
Alexander Gasnikov · Anton Novitskii · Vasilii Novitskii · Farshed Abdukhakimov · Dmitry Kamzolov · Aleksandr Beznosikov · Martin Takac · Pavel Dvurechenskii · Bin Gu -
2021 Poster: ADOM: Accelerated Decentralized Optimization Method for Time-Varying Networks »
Dmitry Kovalev · Egor Shulgin · Peter Richtarik · Alexander Rogozin · Alexander Gasnikov -
2021 Spotlight: ADOM: Accelerated Decentralized Optimization Method for Time-Varying Networks »
Dmitry Kovalev · Egor Shulgin · Peter Richtarik · Alexander Rogozin · Alexander Gasnikov -
2021 Poster: On a Combination of Alternating Minimization and Nesterov's Momentum »
Sergey Guminov · Pavel Dvurechenskii · Nazarii Tupitsa · Alexander Gasnikov -
2021 Spotlight: On a Combination of Alternating Minimization and Nesterov's Momentum »
Sergey Guminov · Pavel Dvurechenskii · Nazarii Tupitsa · Alexander Gasnikov -
2021 Poster: Newton Method over Networks is Fast up to the Statistical Precision »
Amir Daneshmand · Gesualdo Scutari · Pavel Dvurechenskii · Alexander Gasnikov -
2021 Spotlight: Newton Method over Networks is Fast up to the Statistical Precision »
Amir Daneshmand · Gesualdo Scutari · Pavel Dvurechenskii · Alexander Gasnikov -
2020 Poster: Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems »
Filip Hanzely · Dmitry Kovalev · Peter Richtarik -
2020 Poster: Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization »
Zhize Li · Dmitry Kovalev · Xun Qian · Peter Richtarik -
2020 Poster: From Local SGD to Local Fixed-Point Methods for Federated Learning »
Grigory Malinovsky · Dmitry Kovalev · Elnur Gasanov · Laurent CONDAT · Peter Richtarik -
2019 Poster: On the Complexity of Approximating Wasserstein Barycenters »
Alexey Kroshnin · Nazarii Tupitsa · Darina Dvinskikh · Pavel Dvurechenskii · Alexander Gasnikov · Cesar Uribe -
2019 Oral: On the Complexity of Approximating Wasserstein Barycenters »
Alexey Kroshnin · Nazarii Tupitsa · Darina Dvinskikh · Pavel Dvurechenskii · Alexander Gasnikov · Cesar Uribe -
2018 Poster: Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm »
Pavel Dvurechenskii · Alexander Gasnikov · Alexey Kroshnin -
2018 Oral: Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm »
Pavel Dvurechenskii · Alexander Gasnikov · Alexey Kroshnin