Timezone: »
When training neural networks, it has been widely observed that a large step size is essential in stochastic gradient descent (SGD) for obtaining superior models. However, the effect of large step sizes on the success of SGD is not well understood theoretically. Several previous works have attributed this success to the stochastic noise present in SGD. However, we show through a novel set of experiments that the stochastic noise is not sufficient to explain good non-convex training, and that instead the effect of a large learning rate itself is essential for obtaining best performance.We demonstrate the same effects also in the noise-less case, i.e. for full-batch GD. We formally prove that GD with large step size ---on certain non-convex function classes --- follows a different trajectory than GD with a small step size, which can lead to convergence to a global minimum instead of a local one. Our settings provide a framework for future analysis which allows comparing algorithms based on behaviors that can not be observed in the traditional settings.
Author Information
Amirkeivan Mohtashami (Swiss Federal Institute of Technology Lausanne)
Martin Jaggi (EPFL)
Sebastian Stich (CISPA Helmholtz Center for Information Security)
More from the Same Authors
-
2021 : iFedAvg – Interpretable Data-Interoperability for Federated Learning »
David Roschewitz · Mary-Anne Hartley · Luca Corinzia · Martin Jaggi -
2022 : The Gap Between Continuous and Discrete Gradient Descent »
Amirkeivan Mohtashami · Martin Jaggi · Sebastian Stich -
2023 : Layerwise Linear Mode Connectivity »
Linara Adilova · Asja Fischer · Martin Jaggi -
2023 : Landmark Attention: Random-Access Infinite Context Length for Transformers »
Amirkeivan Mohtashami · Martin Jaggi -
2023 : 🎤 Fast Causal Attention with Dynamic Sparsity »
Daniele Paliotta · Matteo Pagliardini · Martin Jaggi · François Fleuret -
2023 Oral: Second-Order Optimization with Lazy Hessians »
Nikita Doikov · El Mahdi Chayti · Martin Jaggi -
2023 Poster: Second-Order Optimization with Lazy Hessians »
Nikita Doikov · El Mahdi Chayti · Martin Jaggi -
2023 Poster: Revisiting Gradient Clipping: Stochastic bias and tight convergence guarantees »
Anastasiia Koloskova · Hadrien Hendrikx · Sebastian Stich -
2021 : Exact Optimization of Conformal Predictors via Incremental and Decremental Learning (Spotlight #13) »
Giovanni Cherubin · Konstantinos Chatzikokolakis · Martin Jaggi -
2021 Poster: Exact Optimization of Conformal Predictors via Incremental and Decremental Learning »
Giovanni Cherubin · Konstantinos Chatzikokolakis · Martin Jaggi -
2021 Poster: Consensus Control for Decentralized Deep Learning »
Lingjing Kong · Tao Lin · Anastasiia Koloskova · Martin Jaggi · Sebastian Stich -
2021 Poster: Quasi-global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data »
Tao Lin · Sai Praneeth Reddy Karimireddy · Sebastian Stich · Martin Jaggi -
2021 Spotlight: Exact Optimization of Conformal Predictors via Incremental and Decremental Learning »
Giovanni Cherubin · Konstantinos Chatzikokolakis · Martin Jaggi -
2021 Spotlight: Quasi-global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data »
Tao Lin · Sai Praneeth Reddy Karimireddy · Sebastian Stich · Martin Jaggi -
2021 Spotlight: Consensus Control for Decentralized Deep Learning »
Lingjing Kong · Tao Lin · Anastasiia Koloskova · Martin Jaggi · Sebastian Stich -
2021 Poster: Learning from History for Byzantine Robust Optimization »
Sai Praneeth Reddy Karimireddy · Lie He · Martin Jaggi -
2021 Spotlight: Learning from History for Byzantine Robust Optimization »
Sai Praneeth Reddy Karimireddy · Lie He · Martin Jaggi -
2020 Poster: Extrapolation for Large-batch Training in Deep Learning »
Tao Lin · Lingjing Kong · Sebastian Stich · Martin Jaggi -
2020 Poster: Optimizer Benchmarking Needs to Account for Hyperparameter Tuning »
Prabhu Teja Sivaprasad · Florian Mai · Thijs Vogels · Martin Jaggi · François Fleuret -
2020 Poster: A Unified Theory of Decentralized SGD with Changing Topology and Local Updates »
Anastasiia Koloskova · Nicolas Loizou · Sadra Boreiri · Martin Jaggi · Sebastian Stich -
2019 Poster: Overcoming Multi-model Forgetting »
Yassine Benyahia · Kaicheng Yu · Kamil Bennani-Smires · Martin Jaggi · Anthony C. Davison · Mathieu Salzmann · Claudiu Musat -
2019 Oral: Overcoming Multi-model Forgetting »
Yassine Benyahia · Kaicheng Yu · Kamil Bennani-Smires · Martin Jaggi · Anthony C. Davison · Mathieu Salzmann · Claudiu Musat -
2019 Poster: Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication »
Anastasiia Koloskova · Sebastian Stich · Martin Jaggi -
2019 Poster: Error Feedback Fixes SignSGD and other Gradient Compression Schemes »
Sai Praneeth Reddy Karimireddy · Quentin Rebjock · Sebastian Stich · Martin Jaggi -
2019 Oral: Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication »
Anastasiia Koloskova · Sebastian Stich · Martin Jaggi -
2019 Oral: Error Feedback Fixes SignSGD and other Gradient Compression Schemes »
Sai Praneeth Reddy Karimireddy · Quentin Rebjock · Sebastian Stich · Martin Jaggi -
2018 Poster: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Oral: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Poster: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Oral: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2017 Poster: Approximate Steepest Coordinate Descent »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Talk: Approximate Steepest Coordinate Descent »
Sebastian Stich · Anant Raj · Martin Jaggi