Timezone: »
We present a fully Bayesian autoencoder model that treats both local latent variables and global decoder parameters in a Bayesian fashion. This approach allows for flexible priors and posterior approximations while keeping the inference costs low. To achieve this, we introduce an amortized MCMC approach by utilizing an implicit stochastic network to learn sampling from the posterior over local latent variables. Furthermore, we extend the model by incorporating a Sparse Gaussian Process prior over the latent space, allowing for a fully Bayesian treatment of inducing points and kernel hyperparameters and leading to improved scalability. Additionally, we enable Deep Gaussian Process priors on the latent space and the handling of missing data. We evaluate our model on a range of experiments focusing on dynamic representation learning and generative modeling, demonstrating the strong performance of our approach in comparison to existing methods that combine Gaussian Processes and autoencoders.
Author Information
Ba-Hien Tran (EURECOM)
Babak Shahbaba (University of California, Irvine)
Stephan Mandt (University of California, Irivine)
Stephan Mandt is an Assistant Professor of Computer Science at the University of California, Irvine. From 2016 until 2018, he was a Senior Researcher and head of the statistical machine learning group at Disney Research, first in Pittsburgh and later in Los Angeles. He held previous postdoctoral positions at Columbia University and at Princeton University. Stephan holds a PhD in Theoretical Physics from the University of Cologne. He is a Fellow of the German National Merit Foundation, a Kavli Fellow of the U.S. National Academy of Sciences, and was a visiting researcher at Google Brain. Stephan serves regularly as an Area Chair for NeurIPS, ICML, AAAI, and ICLR, and is a member of the Editorial Board of JMLR. His research is currently supported by NSF, DARPA, IBM, and Qualcomm.
Maurizio Filippone (EURECOM)
More from the Same Authors
-
2022 : A New Look on Diffusion Times for Score-based Generative Models »
Giulio Franzese · Simone Rossi · Lixuan YANG · alessandro finamore · Dario Rossi · Maurizio Filippone · Pietro Michiardi -
2023 : Improving Training of Likelihood-based Generative Models with Gaussian Homotopy »
Ba-Hien Tran · Giulio Franzese · Pietro Michiardi · Maurizio Filippone -
2023 : Lossy Image Compression with Conditional Diffusion Model »
Ruihan Yang · Stephan Mandt -
2023 : Estimating the Rate-Distortion Function by Wasserstein Gradient Descent »
Yibo Yang · Stephan Eckstein · Marcel Nutz · Stephan Mandt -
2023 : Autoencoding Implicit Neural Representations for Image Compression »
Tuan Pham · Yibo Yang · Stephan Mandt -
2023 Workshop: Neural Compression: From Information Theory to Applications »
Berivan Isik · Yibo Yang · Daniel Severo · Karen Ullrich · Robert Bamler · Stephan Mandt -
2023 Poster: Deep Anomaly Detection under Labeling Budget Constraints »
Aodong Li · Chen Qiu · Marius Kloft · Padhraic Smyth · Stephan Mandt · Maja Rudolph -
2022 Poster: Revisiting the Effects of Stochasticity for Hamiltonian Samplers »
Giulio Franzese · Dimitrios Milios · Maurizio Filippone · Pietro Michiardi -
2022 Spotlight: Revisiting the Effects of Stochasticity for Hamiltonian Samplers »
Giulio Franzese · Dimitrios Milios · Maurizio Filippone · Pietro Michiardi -
2022 Poster: Structured Stochastic Gradient MCMC »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 Spotlight: Structured Stochastic Gradient MCMC »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 Poster: Latent Outlier Exposure for Anomaly Detection with Contaminated Data »
Chen Qiu · Aodong Li · Marius Kloft · Maja Rudolph · Stephan Mandt -
2022 Spotlight: Latent Outlier Exposure for Anomaly Detection with Contaminated Data »
Chen Qiu · Aodong Li · Marius Kloft · Maja Rudolph · Stephan Mandt -
2021 Poster: Sparse within Sparse Gaussian Processes using Neighbor Information »
Gia-Lac Tran · Dimitrios Milios · Pietro Michiardi · Maurizio Filippone -
2021 Poster: Neural Transformation Learning for Deep Anomaly Detection Beyond Images »
Chen Qiu · Timo Pfrommer · Marius Kloft · Stephan Mandt · Maja Rudolph -
2021 Spotlight: Neural Transformation Learning for Deep Anomaly Detection Beyond Images »
Chen Qiu · Timo Pfrommer · Marius Kloft · Stephan Mandt · Maja Rudolph -
2021 Spotlight: Sparse within Sparse Gaussian Processes using Neighbor Information »
Gia-Lac Tran · Dimitrios Milios · Pietro Michiardi · Maurizio Filippone -
2021 Poster: An Identifiable Double VAE For Disentangled Representations »
Graziano Mita · Maurizio Filippone · Pietro Michiardi -
2021 Spotlight: An Identifiable Double VAE For Disentangled Representations »
Graziano Mita · Maurizio Filippone · Pietro Michiardi -
2020 Poster: The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks »
Jakub Swiatkowski · Kevin Roth · Bastiaan Veeling · Linh Tran · Joshua V Dillon · Jasper Snoek · Stephan Mandt · Tim Salimans · Rodolphe Jenatton · Sebastian Nowozin -
2020 Poster: How Good is the Bayes Posterior in Deep Neural Networks Really? »
Florian Wenzel · Kevin Roth · Bastiaan Veeling · Jakub Swiatkowski · Linh Tran · Stephan Mandt · Jasper Snoek · Tim Salimans · Rodolphe Jenatton · Sebastian Nowozin -
2020 Poster: Variational Bayesian Quantization »
Yibo Yang · Robert Bamler · Stephan Mandt -
2019 Poster: Good Initializations of Variational Bayes for Deep Models »
Simone Rossi · Pietro Michiardi · Maurizio Filippone -
2019 Oral: Good Initializations of Variational Bayes for Deep Models »
Simone Rossi · Pietro Michiardi · Maurizio Filippone -
2018 Poster: Iterative Amortized Inference »
Joe Marino · Yisong Yue · Stephan Mandt -
2018 Poster: Disentangled Sequential Autoencoder »
Yingzhen Li · Stephan Mandt -
2018 Oral: Disentangled Sequential Autoencoder »
Yingzhen Li · Stephan Mandt -
2018 Oral: Iterative Amortized Inference »
Joe Marino · Yisong Yue · Stephan Mandt -
2018 Poster: Constraining the Dynamics of Deep Probabilistic Models »
Marco Lorenzi · Maurizio Filippone -
2018 Oral: Constraining the Dynamics of Deep Probabilistic Models »
Marco Lorenzi · Maurizio Filippone -
2018 Poster: Quasi-Monte Carlo Variational Inference »
Alexander Buchholz · Florian Wenzel · Stephan Mandt -
2018 Poster: Improving Optimization in Models With Continuous Symmetry Breaking »
Robert Bamler · Stephan Mandt -
2018 Oral: Quasi-Monte Carlo Variational Inference »
Alexander Buchholz · Florian Wenzel · Stephan Mandt -
2018 Oral: Improving Optimization in Models With Continuous Symmetry Breaking »
Robert Bamler · Stephan Mandt -
2017 Poster: Dynamic Word Embeddings »
Robert Bamler · Stephan Mandt -
2017 Poster: Random Feature Expansions for Deep Gaussian Processes »
Kurt Cutajar · Edwin Bonilla · Pietro Michiardi · Maurizio Filippone -
2017 Talk: Random Feature Expansions for Deep Gaussian Processes »
Kurt Cutajar · Edwin Bonilla · Pietro Michiardi · Maurizio Filippone -
2017 Talk: Dynamic Word Embeddings »
Robert Bamler · Stephan Mandt