Timezone: »
Reinforcement Learning (RL) algorithms are often known for sample inefficiency and difficult generalization. Recently, Unsupervised Environment Design (UED) emerged as a new paradigm for zero-shot generalization by simultaneously learning a task distribution and agent policies on the generated tasks. This is a non-stationary process where the task distribution evolves along with agent policies; creating an instability over time. While past works demonstrated the potential of such approaches, sampling effectively from the task space remains an open challenge, bottlenecking these approaches. To this end, we introduce CLUTR: a novel unsupervised curriculum learning algorithm that decouples task representation and curriculum learning into a two-stage optimization. It first trains a recurrent variational autoencoder on randomly generated tasks to learn a latent task manifold. Next, a teacher agent creates a curriculum by maximizing a minimax REGRET-based objective on a set of latent tasks sampled from this manifold. Using the fixed-pretrained task manifold, we show that CLUTR successfully overcomes the non-stationarity problem and improves stability. Our experimental results show CLUTR outperforms PAIRED, a principled and popular UED method, in the challenging CarRacing and navigation environments: achieving 10.6X and 45% improvement in zero-shot generalization, respectively. CLUTR also performs comparably to the non-UED state-of-the-art for CarRacing, while requiring 500X fewer environment interactions. We open source our code at https://github.com/clutr/clutr.
Author Information
Abdus Salam Azad (University of California, Berkeley)
Izzeddin Gur (Google)
Jasper Emhoff (University of California, Berkeley)
Nathaniel Alexis (University of California, Berkeley)
Aleksandra Faust (Google Brain)
Aleksandra Faust is a Staff Research Scientist at Google Brain Robotics, leading Task and Motion planning research group. Previously, Aleksandra led machine learning efforts for self-driving car planning and controls in Waymo, and was a researcher at Sandia National Laboratories. She earned a Ph.D. in Computer Science at the University of New Mexico, a Master's in Computer Science from the University of Illinois at Urbana-Champaign, and a Bachelors in Math with a minor in Computer Science from the University of Belgrade. Her research interests include machine learning for safe, scalable, and socially-aware motion planning, decision-making, and robot behavior. Aleksandra won the Tom L. Popejoy Award for the best doctoral dissertation at the University of New Mexico in STEM in the period of 2011-2014, and was named Distinguished Alumna by the University of New Mexico School of Engineering. Her work has been featured in the New York Times, PC Magazine, ZdNet, and was awarded Best Paper in Service Robotics at ICRA 2018.
Pieter Abbeel (UC Berkeley & Covariant)
Ion Stoica (University of California, Berkeley)
More from the Same Authors
-
2021 : SparseDice: Imitation Learning for Temporally Sparse Data via Regularization »
Alberto Camacho · Izzeddin Gur · Marcin Moczulski · Ofir Nachum · Aleksandra Faust -
2021 : Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Michael Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 : Data-Efficient Exploration with Self Play for Atari »
Michael Laskin · Catherine Cang · Ryan Rudes · Pieter Abbeel -
2021 : Hierarchical Few-Shot Imitation with Skill Transition Models »
kourosh hakhamaneshi · Ruihan Zhao · Albert Zhan · Pieter Abbeel · Michael Laskin -
2021 : Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Michael Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 : Explaining Reinforcement Learning Policies through Counterfactual Trajectories »
Julius Frost · Olivia Watkins · Eric Weiner · Pieter Abbeel · Trevor Darrell · Bryan Plummer · Kate Saenko -
2022 : Multimodal Masked Autoencoders Learn Transferable Representations »
Xinyang Geng · Hao Liu · Lisa Lee · Dale Schuurmans · Sergey Levine · Pieter Abbeel -
2023 : Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard Security Attacks »
Daniel Kang · Xuechen Li · Ion Stoica · Carlos Guestrin · Matei Zaharia · Tatsunori Hashimoto -
2023 : Blockwise Parallel Transformer for Long Context Large Models »
Hao Liu · Pieter Abbeel -
2023 : Guided Evolution with Binary Predictors for ML Program Search »
John Co-Reyes · Yingjie Miao · George Tucker · Aleksandra Faust · Esteban Real -
2023 Poster: Masked Trajectory Models for Prediction, Representation, and Control »
Philipp Wu · Arjun Majumdar · Kevin Stone · Yixin Lin · Igor Mordatch · Pieter Abbeel · Aravind Rajeswaran -
2023 Poster: Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2023 Poster: Guiding Pretraining in Reinforcement Learning with Large Language Models »
Yuqing Du · Olivia Watkins · Zihan Wang · Cédric Colas · Trevor Darrell · Pieter Abbeel · Abhishek Gupta · Jacob Andreas -
2023 Poster: FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Oral: FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Poster: Controllability-Aware Unsupervised Skill Discovery »
Seohong Park · Kimin Lee · Youngwoon Lee · Pieter Abbeel -
2023 Poster: Emergent Agentic Transformer from Chain of Hindsight Experience »
Hao Liu · Pieter Abbeel -
2023 Poster: Temporally Consistent Transformers for Video Generation »
Wilson Yan · Danijar Hafner · Stephen James · Pieter Abbeel -
2023 Poster: Multi-View Masked World Models for Visual Robotic Manipulation »
Younggyo Seo · Junsu Kim · Stephen James · Kimin Lee · Jinwoo Shin · Pieter Abbeel -
2023 Poster: The Wisdom of Hindsight Makes Language Models Better Instruction Followers »
Tianjun Zhang · Fangchen Liu · Justin Wong · Pieter Abbeel · Joseph E Gonzalez -
2022 : Multimodal Masked Autoencoders Learn Transferable Representations »
Xinyang Geng · Hao Liu · Lisa Lee · Dale Schuurmans · Sergey Levine · Pieter Abbeel -
2022 Poster: Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks »
Litian Liang · Yaosheng Xu · Stephen Mcaleer · Dailin Hu · Alexander Ihler · Pieter Abbeel · Roy Fox -
2022 Poster: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Spotlight: Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks »
Litian Liang · Yaosheng Xu · Stephen Mcaleer · Dailin Hu · Alexander Ihler · Pieter Abbeel · Roy Fox -
2022 Spotlight: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Poster: Reinforcement Learning with Action-Free Pre-Training from Videos »
Younggyo Seo · Kimin Lee · Stephen James · Pieter Abbeel -
2022 Spotlight: Reinforcement Learning with Action-Free Pre-Training from Videos »
Younggyo Seo · Kimin Lee · Stephen James · Pieter Abbeel -
2021 : Panel Discussion »
Rosemary Nan Ke · Danijar Hafner · Pieter Abbeel · Chelsea Finn · Chelsea Finn -
2021 : Invited Talk by Pieter Abbeel »
Pieter Abbeel -
2021 Poster: Decoupling Representation Learning from Reinforcement Learning »
Adam Stooke · Kimin Lee · Pieter Abbeel · Michael Laskin -
2021 Spotlight: Decoupling Representation Learning from Reinforcement Learning »
Adam Stooke · Kimin Lee · Pieter Abbeel · Michael Laskin -
2021 Poster: APS: Active Pretraining with Successor Features »
Hao Liu · Pieter Abbeel -
2021 Poster: SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning »
Kimin Lee · Michael Laskin · Aravind Srinivas · Pieter Abbeel -
2021 Spotlight: SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning »
Kimin Lee · Michael Laskin · Aravind Srinivas · Pieter Abbeel -
2021 Oral: APS: Active Pretraining with Successor Features »
Hao Liu · Pieter Abbeel -
2021 Poster: PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via Relabeling Experience and Unsupervised Pre-training »
Kimin Lee · Laura Smith · Pieter Abbeel -
2021 Oral: PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via Relabeling Experience and Unsupervised Pre-training »
Kimin Lee · Laura Smith · Pieter Abbeel -
2021 Poster: Unsupervised Learning of Visual 3D Keypoints for Control »
Boyuan Chen · Pieter Abbeel · Deepak Pathak -
2021 Poster: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Poster: MSA Transformer »
Roshan Rao · Jason Liu · Robert Verkuil · Joshua Meier · John Canny · Pieter Abbeel · Tom Sercu · Alexander Rives -
2021 Spotlight: MSA Transformer »
Roshan Rao · Jason Liu · Robert Verkuil · Joshua Meier · John Canny · Pieter Abbeel · Tom Sercu · Alexander Rives -
2021 Spotlight: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Spotlight: Unsupervised Learning of Visual 3D Keypoints for Control »
Boyuan Chen · Pieter Abbeel · Deepak Pathak -
2021 : Part 2: Unsupervised Pre-Training in RL »
Pieter Abbeel -
2021 Tutorial: Unsupervised Learning for Reinforcement Learning »
Aravind Srinivas · Pieter Abbeel -
2020 Poster: CURL: Contrastive Unsupervised Representations for Reinforcement Learning »
Michael Laskin · Aravind Srinivas · Pieter Abbeel -
2020 Poster: Hallucinative Topological Memory for Zero-Shot Visual Planning »
Kara Liu · Thanard Kurutach · Christine Tung · Pieter Abbeel · Aviv Tamar -
2020 Poster: Planning to Explore via Self-Supervised World Models »
Ramanan Sekar · Oleh Rybkin · Kostas Daniilidis · Pieter Abbeel · Danijar Hafner · Deepak Pathak -
2020 Poster: Responsive Safety in Reinforcement Learning by PID Lagrangian Methods »
Adam Stooke · Joshua Achiam · Pieter Abbeel -
2020 Poster: Variable Skipping for Autoregressive Range Density Estimation »
Eric Liang · Zongheng Yang · Ion Stoica · Pieter Abbeel · Yan Duan · Peter Chen -
2020 Poster: Hierarchically Decoupled Imitation For Morphological Transfer »
Donald Hejna · Lerrel Pinto · Pieter Abbeel -
2019 Workshop: Workshop on Self-Supervised Learning »
Aaron van den Oord · Yusuf Aytar · Carl Doersch · Carl Vondrick · Alec Radford · Pierre Sermanet · Amir Zamir · Pieter Abbeel -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables »
Friso Kingma · Pieter Abbeel · Jonathan Ho -
2019 Poster: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables »
Friso Kingma · Pieter Abbeel · Jonathan Ho -
2019 Poster: Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules »
Daniel Ho · Eric Liang · Peter Chen · Ion Stoica · Pieter Abbeel -
2019 Poster: Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design »
Jonathan Ho · Peter Chen · Aravind Srinivas · Rocky Duan · Pieter Abbeel -
2019 Poster: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Oral: Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design »
Jonathan Ho · Peter Chen · Aravind Srinivas · Rocky Duan · Pieter Abbeel -
2019 Oral: Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules »
Daniel Ho · Eric Liang · Peter Chen · Ion Stoica · Pieter Abbeel -
2019 Oral: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2018 Poster: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Poster: PixelSNAIL: An Improved Autoregressive Generative Model »
Xi Chen · Nikhil Mishra · Mostafa Rohaninejad · Pieter Abbeel -
2018 Oral: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Oral: PixelSNAIL: An Improved Autoregressive Generative Model »
Xi Chen · Nikhil Mishra · Mostafa Rohaninejad · Pieter Abbeel -
2018 Poster: Automatic Goal Generation for Reinforcement Learning Agents »
Carlos Florensa · David Held · Xinyang Geng · Pieter Abbeel -
2018 Poster: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2018 Poster: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Poster: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Automatic Goal Generation for Reinforcement Learning Agents »
Carlos Florensa · David Held · Xinyang Geng · Pieter Abbeel -
2018 Oral: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Oral: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2017 Poster: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Poster: Prediction and Control with Temporal Segment Models »
Nikhil Mishra · Pieter Abbeel · Igor Mordatch -
2017 Poster: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Poster: Constrained Policy Optimization »
Joshua Achiam · David Held · Aviv Tamar · Pieter Abbeel -
2017 Talk: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Talk: Prediction and Control with Temporal Segment Models »
Nikhil Mishra · Pieter Abbeel · Igor Mordatch -
2017 Talk: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Talk: Constrained Policy Optimization »
Joshua Achiam · David Held · Aviv Tamar · Pieter Abbeel