Timezone: »
We propose a new method to ensure neural ordinary differential equations (ODEs) satisfy output specifications by using invariance set propagation. Our approach uses a class of control barrier functions to transform output specifications into constraints on the parameters and inputs of the learning system. This setup allows us to achieve output specification guarantees simply by changing the constrained parameters/inputs both during training and inference. Moreover, we demonstrate that our invariance set propagation through data-controlled neural ODEs not only maintains generalization performance but also creates an additional degree of robustness by enabling causal manipulation of the system's parameters/inputs. We test our method on a series of representation learning tasks, including modeling physical dynamics and convexity portraits, as well as safe collision avoidance for autonomous vehicles.
Author Information
Wei Xiao (MIT)
I am a Postdoc Associate at the MIT Computer Science and Artificial Intelligence Laboratory
Johnson Tsun-Hsuan Wang (Massachusetts Institute of Technology)
Ramin Hasani (MIT)
Mathias Lechner (Massachusetts Institute of Technology)
Yutong Ban
Chuang Gan (Umass Amherst/ IBM)
Daniela Rus (MIT CSAIL)
More from the Same Authors
-
2021 : Is Bang-Bang Control All You Need? »
Tim Seyde · Igor Gilitschenski · Wilko Schwarting · Bartolomeo Stellato · Martin Riedmiller · Markus Wulfmeier · Daniela Rus -
2023 : Adversarial Training in Continuous-Time Models and Irregularly Sampled Time-Series »
Alvin Li · Mathias Lechner · Alexander Amini · Daniela Rus -
2023 : Risk-Aware Image Generation by Estimating and Propagating Uncertainty »
Alejandro Perez · Iaroslav Elistratov · Fynn Schmitt-Ulms · Ege Demir · Sadhana Lolla · Elaheh Ahmadi · Daniela Rus · Alexander Amini -
2023 Poster: Reparameterized Policy Learning for Multimodal Trajectory Optimization »
Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su -
2023 Poster: Provable Data Subset Selection For Efficient Neural Networks Training »
Morad Tukan · Samson Zhou · Alaa Maalouf · Daniela Rus · Vladimir Braverman · Dan Feldman -
2023 Poster: AutoCoreset: An Automatic Practical Coreset Construction Framework »
Alaa Maalouf · Morad Tukan · Vladimir Braverman · Daniela Rus -
2023 Oral: Reparameterized Policy Learning for Multimodal Trajectory Optimization »
Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su -
2023 Poster: Dataset Distillation with Convexified Implicit Gradients »
Noel Loo · Ramin Hasani · Mathias Lechner · Daniela Rus -
2023 Poster: Learning Neural Constitutive Laws from Motion Observations for Generalizable PDE Dynamics »
Pingchuan Ma · Peter Yichen Chen · Bolei Deng · Josh Tenenbaum · Tao Du · Chuang Gan · Wojciech Matusik -
2022 Poster: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2021 : Invited Talk 2: Addressing Model Bias and Uncertainty via Evidential Deep Learning »
Daniela Rus -
2021 Poster: Global Prosody Style Transfer Without Text Transcriptions »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson -
2021 Oral: Global Prosody Style Transfer Without Text Transcriptions »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson -
2021 Poster: Adversarial Option-Aware Hierarchical Imitation Learning »
Mingxuan Jing · Wenbing Huang · Fuchun Sun · Xiaojian Ma · Tao Kong · Chuang Gan · Lei Li -
2021 Poster: The Logical Options Framework »
Brandon Araki · Xiao Li · Kiran Vodrahalli · Jonathan DeCastro · Micah Fry · Daniela Rus -
2021 Poster: AGENT: A Benchmark for Core Psychological Reasoning »
Tianmin Shu · Abhishek Bhandwaldar · Chuang Gan · Kevin Smith · Shari Liu · Dan Gutfreund · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2021 Poster: On-Off Center-Surround Receptive Fields for Accurate and Robust Image Classification »
Zahra Babaiee · Ramin Hasani · Mathias Lechner · Daniela Rus · Radu Grosu -
2021 Spotlight: AGENT: A Benchmark for Core Psychological Reasoning »
Tianmin Shu · Abhishek Bhandwaldar · Chuang Gan · Kevin Smith · Shari Liu · Dan Gutfreund · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2021 Spotlight: Adversarial Option-Aware Hierarchical Imitation Learning »
Mingxuan Jing · Wenbing Huang · Fuchun Sun · Xiaojian Ma · Tao Kong · Chuang Gan · Lei Li -
2021 Spotlight: On-Off Center-Surround Receptive Fields for Accurate and Robust Image Classification »
Zahra Babaiee · Ramin Hasani · Mathias Lechner · Daniela Rus · Radu Grosu -
2021 Oral: The Logical Options Framework »
Brandon Araki · Xiao Li · Kiran Vodrahalli · Jonathan DeCastro · Micah Fry · Daniela Rus -
2020 Poster: A Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural Circuits »
Ramin Hasani · Mathias Lechner · Alexander Amini · Daniela Rus · Radu Grosu -
2020 Poster: Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control »
Jie Xu · Yunsheng Tian · Pingchuan Ma · Daniela Rus · Shinjiro Sueda · Wojciech Matusik -
2017 Poster: Coresets for Vector Summarization with Applications to Network Graphs »
Dan Feldman · Sedat Ozer · Daniela Rus -
2017 Talk: Coresets for Vector Summarization with Applications to Network Graphs »
Dan Feldman · Sedat Ozer · Daniela Rus