Timezone: »
Medical studies frequently require to extract the relationship between each covariate and the outcome with statistical confidence measures. To do this, simple parametric models are frequently used (e.g. coefficients of linear regression) but always fitted on the whole dataset. However, it is common that the covariates may not have a uniform effect over the whole population and thus a unified simple model can miss the heterogeneous signal. For example, a linear model may be able to explain a subset of the data but fail on the rest due to the nonlinearity and heterogeneity in the data. In this paper, we propose DDGroup (data-driven group discovery), a data-driven method to effectively identify subgroups in the data with a uniform linear relationship between the features and the label. DDGroup outputs an interpretable region in which the linear model is expected to hold. It is simple to implement and computationally tractable for use. We show theoretically that, given a large enough sample, DDGroup recovers a region where a single linear model with low variance is well-specified (if one exists), and experiments on real-world medical datasets confirm that it can discover regions where a local linear model has improved performance. Our experiments also show that DDGroup can uncover subgroups with qualitatively different relationships which are missed by simply applying parametric approaches to the whole dataset.
Author Information
Zachary Izzo (Stanford University)
Ruishan Liu (Stanford University)
James Zou (Stanford)
More from the Same Authors
-
2021 : Stateful Performative Gradient Descent »
Zachary Izzo · James Zou · Lexing Ying -
2022 : On the nonlinear correlation of ML performance across data subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2022 : MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts »
Weixin Liang · Xinyu Yang · James Zou -
2022 : Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning »
Weixin Liang · Yuhui Zhang · Yongchan Kwon · Serena Yeung · James Zou -
2023 : Last-Layer Fairness Fine-tuning is Simple and Effective for Neural Networks »
Yuzhen Mao · Zhun Deng · Huaxiu Yao · Ting Ye · Kenji Kawaguchi · James Zou -
2023 : Prospectors: Leveraging Short Contexts to Mine Salient Objects in High-dimensional Imagery »
Gautam Machiraju · Arjun Desai · James Zou · Christopher Re · Parag Mallick -
2023 : Beyond Confidence: Reliable Models Should Also Consider Atypicality »
Mert Yuksekgonul · Linjun Zhang · James Zou · Carlos Guestrin -
2023 : Less is More: Using Multiple LLMs for Applications with Lower Costs »
Lingjiao Chen · Matei Zaharia · James Zou -
2023 Poster: Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value »
Yongchan Kwon · James Zou -
2023 Poster: Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2023 Poster: Discover and Cure: Concept-aware Mitigation of Spurious Correlation »
Shirley Wu · Mert Yuksekgonul · Linjun Zhang · James Zou -
2022 : Invited talk #2 James Zou (Title: Machine learning to make clinical trials more efficient and diverse) »
James Zou -
2022 : 7-UP: generating in silico CODEX from a small set of immunofluorescence markers »
James Zou -
2022 : Data Sculpting: Interpretable Algorithm for End-to-End Cohort Selection »
Ruishan Liu · James Zou -
2022 : Contributed Talk 2: MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts »
Weixin Liang · Xinyu Yang · James Zou -
2022 Poster: Meaningfully debugging model mistakes using conceptual counterfactual explanations »
Abubakar Abid · Mert Yuksekgonul · James Zou -
2022 Spotlight: Meaningfully debugging model mistakes using conceptual counterfactual explanations »
Abubakar Abid · Mert Yuksekgonul · James Zou -
2021 Poster: How to Learn when Data Reacts to Your Model: Performative Gradient Descent »
Zachary Izzo · Lexing Ying · James Zou -
2021 Spotlight: How to Learn when Data Reacts to Your Model: Performative Gradient Descent »
Zachary Izzo · Lexing Ying · James Zou -
2019 : Poster Session & Lunch break »
Kay Wiese · Brandon Carter · Dan DeBlasio · Mohammad Hashir · Rachel Chan · Matteo Manica · Ali Oskooei · Zhenqin Wu · Karren Yang · François FAGES · Ruishan Liu · Nicasia Beebe-Wang · Bryan He · Jacopo Cirrone · Pekka Marttinen · Elior Rahmani · Harri Lähdesmäki · Nikhil Yadala · Andreea-Ioana Deac · Ava Soleimany · Mansi Ranjit Mane · Jason Ernst · Joseph Paul Cohen · Joel Mathew · Vishal Agarwal · AN ZHENG -
2019 Poster: Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits »
Martin Zhang · James Zou · David Tse -
2019 Oral: Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits »
Martin Zhang · James Zou · David Tse -
2017 : The effects of memory replay in reinforcement learning »
Ruishan Liu -
2017 Poster: Estimating the unseen from multiple populations »
Aditi Raghunathan · Greg Valiant · James Zou -
2017 Poster: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Estimating the unseen from multiple populations »
Aditi Raghunathan · Greg Valiant · James Zou