Timezone: »
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding is limited. In this work, we provide evidence that disentangled representations coupled with sparse task-specific predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
Author Information
Sébastien Lachapelle (Université de Montréal, Mila)
Tristan Deleu (Mila - Université de Montréal)
Divyat Mahajan (Mila – Quebec AI Institute)
Ioannis Mitliagkas (MILA, UdeM)
Yoshua Bengio (Mila - Quebec AI Institute)
Simon Lacoste-Julien (Mila, University of Montreal & Samsung SAIL Montreal)

Simon Lacoste-Julien is an associate professor at Mila and DIRO from Université de Montréal, and Canada CIFAR AI Chair holder. He also heads part time the SAIT AI Lab Montreal from Samsung. His research interests are machine learning and applied math, with applications in related fields like computer vision and natural language processing. He obtained a B.Sc. in math., physics and computer science from McGill, a PhD in computer science from UC Berkeley and a post-doc from the University of Cambridge. He spent a few years as a research faculty at INRIA and École normale supérieure in Paris before coming back to his roots in Montreal in 2016 to answer the call from Yoshua Bengio in growing the Montreal AI ecosystem.
Quentin Bertrand (Mila)
More from the Same Authors
-
2021 : Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Sékou-Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2021 : Epoch-Wise Double Descent: A Theory of Multi-scale Feature Learning Dynamics »
Mohammad Pezeshki · Amartya Mitra · Yoshua Bengio · Guillaume Lajoie -
2021 : Exploration-Driven Representation Learning in Reinforcement Learning »
Akram Erraqabi · Mingde Zhao · Marlos C. Machado · Yoshua Bengio · Sainbayar Sukhbaatar · Ludovic Denoyer · Alessandro Lazaric -
2021 : Variational Causal Networks: Approximate Bayesian Inference over Causal Structures »
Yashas Annadani · Jonas Rothfuss · Alexandre Lacoste · Nino Scherrer · Anirudh Goyal · Yoshua Bengio · Stefan Bauer -
2021 : Typing assumptions improve identification in causal discovery »
Philippe Brouillard · Perouz Taslakian · Alexandre Lacoste · Sébastien Lachapelle · Alexandre Drouin -
2021 : Discovering Latent Causal Variables via Mechanism Sparsity: A New Principle for Nonlinear ICA »
Sébastien Lachapelle · Pau Rodriguez · Remi Le Priol · Alexandre Lacoste -
2022 : On the Generalization and Adaption Performance of Causal Models »
Nino Scherrer · Anirudh Goyal · Stefan Bauer · Yoshua Bengio · Rosemary Nan Ke -
2022 : MAgNet: Mesh Agnostic Neural PDE Solver »
Oussama Boussif · Yoshua Bengio · Loubna Benabbou · Dan Assouline -
2023 : Towards Out-of-Distribution Adversarial Robustness »
Adam Ibrahim · Charles Guille-Escuret · Ioannis Mitliagkas · Irina Rish · David Krueger · Pouya Bashivan -
2023 : Identifiability of Discretized Latent Coordinate Systems via Density Landmarks Detection »
Vitória Barin-Pacela · Kartik Ahuja · Simon Lacoste-Julien · Pascal Vincent -
2023 : Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport »
Alexander Tong · Nikolay Malkin · Guillaume Huguet · Yanlei Zhang · Jarrid Rector-Brooks · Kilian Fatras · Guy Wolf · Yoshua Bengio -
2023 : Simulation-Free Schrödinger Bridges via Score and Flow Matching »
Alexander Tong · Nikolay Malkin · Kilian Fatras · Lazar Atanackovic · Yanlei Zhang · Guillaume Huguet · Guy Wolf · Yoshua Bengio -
2023 : LEAD: Min-Max Optimization from a Physical Perspective »
Reyhane Askari Hemmat · Amartya Mitra · Guillaume Lajoie · Ioannis Mitliagkas -
2023 : OC-NMN: Object-centric Compositional Neural Module Network for Generative Visual Analogical Reasoning »
Rim Assouel · Pau Rodriguez · Perouz Taslakian · David Vazquez · Yoshua Bengio -
2023 : Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation »
Chris Emezue · Alexandre Drouin · Tristan Deleu · Stefan Bauer · Yoshua Bengio -
2023 : Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network »
Tristan Deleu · Mizu Nishikawa-Toomey · Jithendaraa Subramanian · Nikolay Malkin · Laurent Charlin · Yoshua Bengio -
2023 : Identifiability of Discretized Latent Coordinate Systems via Density Landmarks Detection »
Vitória Barin-Pacela · Kartik Ahuja · Simon Lacoste-Julien · Pascal Vincent -
2023 : BatchGFN: Generative Flow Networks for Batch Active Learning »
Shreshth Malik · Salem Lahlou · Andrew Jesson · Moksh Jain · Nikolay Malkin · Tristan Deleu · Yoshua Bengio · Yarin Gal -
2023 : Thompson Sampling for Improved Exploration in GFlowNets »
Jarrid Rector-Brooks · Kanika Madan · Moksh Jain · Maksym Korablyov · Chenghao Liu · Sarath Chandar · Nikolay Malkin · Yoshua Bengio -
2023 : GFlowNets for Causal Discovery: an Overview »
Dragos Cristian Manta · Edward Hu · Yoshua Bengio -
2023 : Constant Memory Attention Block »
Leo Feng · Frederick Tung · Hossein Hajimirsadeghi · Yoshua Bengio · Mohamed Osama Ahmed -
2023 : What if We Enrich day-ahead Solar Irradiance Time Series Forecasting with Spatio-Temporal Context? »
Oussama Boussif · Ghait Boukachab · Dan Assouline · Stefano Massaroli · Tianle Yuan · Loubna Benabbou · Yoshua Bengio -
2023 : GFlowNets for Causal Discovery: an Overview »
Dragos Cristian Manta · Edward Hu · Yoshua Bengio -
2023 Workshop: Structured Probabilistic Inference and Generative Modeling »
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio -
2023 : Opening Remark »
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio -
2023 Oral: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: Equivariance with Learned Canonicalization Functions »
Sékou-Oumar Kaba · Arnab Kumar Mondal · Yan Zhang · Yoshua Bengio · Siamak Ravanbakhsh -
2023 Poster: GFlowOut: Dropout with Generative Flow Networks »
Dianbo Liu · Moksh Jain · Bonaventure F. P. Dossou · Qianli Shen · Salem Lahlou · Anirudh Goyal · Nikolay Malkin · Chris Emezue · Dinghuai Zhang · Nadhir Hassen · Xu Ji · Kenji Kawaguchi · Yoshua Bengio -
2023 Poster: Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models? »
Boris Knyazev · DOHA HWANG · Simon Lacoste-Julien -
2023 Poster: Discrete Key-Value Bottleneck »
Frederik Träuble · Anirudh Goyal · Nasim Rahaman · Michael Mozer · Kenji Kawaguchi · Yoshua Bengio · Bernhard Schölkopf -
2023 Poster: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: Better Training of GFlowNets with Local Credit and Incomplete Trajectories »
Ling Pan · Nikolay Malkin · Dinghuai Zhang · Yoshua Bengio -
2023 Poster: Learning GFlowNets From Partial Episodes For Improved Convergence And Stability »
Kanika Madan · Jarrid Rector-Brooks · Maksym Korablyov · Emmanuel Bengio · Moksh Jain · Andrei-Cristian Nica · Tom Bosc · Yoshua Bengio · Nikolay Malkin -
2023 Poster: CrossSplit: Mitigating Label Noise Memorization through Data Splitting »
Jihye Kim · Aristide Baratin · Yan Zhang · Simon Lacoste-Julien -
2023 Oral: Interventional Causal Representation Learning »
Kartik Ahuja · Divyat Mahajan · Yixin Wang · Yoshua Bengio -
2023 Oral: Learning GFlowNets From Partial Episodes For Improved Convergence And Stability »
Kanika Madan · Jarrid Rector-Brooks · Maksym Korablyov · Emmanuel Bengio · Moksh Jain · Andrei-Cristian Nica · Tom Bosc · Yoshua Bengio · Nikolay Malkin -
2023 Poster: FAENet: Frame Averaging Equivariant GNN for Materials Modeling »
ALEXANDRE DUVAL · Victor Schmidt · Alex Hernandez-Garcia · Santiago Miret · Fragkiskos Malliaros · Yoshua Bengio · David Rolnick -
2023 Poster: Multi-Objective GFlowNets »
Moksh Jain · Sharath Chandra Raparthy · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Yoshua Bengio · Santiago Miret · Emmanuel Bengio -
2023 Poster: Interventional Causal Representation Learning »
Kartik Ahuja · Divyat Mahajan · Yixin Wang · Yoshua Bengio -
2023 Poster: Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2023 Poster: A theory of continuous generative flow networks »
Salem Lahlou · Tristan Deleu · Pablo Lemos · Dinghuai Zhang · Alexandra Volokhova · Alex Hernandez-Garcia · Lena Nehale Ezzine · Yoshua Bengio · Nikolay Malkin -
2023 Poster: GFlowNet-EM for Learning Compositional Latent Variable Models »
Edward Hu · Nikolay Malkin · Moksh Jain · Katie Everett · Alexandros Graikos · Yoshua Bengio -
2023 : Identifiability of Discretized Latent Coordinate Systems via Density Landmarks Detection »
Vitória Barin-Pacela · Kartik Ahuja · Simon Lacoste-Julien · Pascal Vincent -
2023 : Omega: Optimistic EMA Gradients »
Juan Ramirez · Rohan Sukumaran · Quentin Bertrand · Gauthier Gidel -
2023 : Omega: Optimistic EMA Gradients »
Juan Ramirez · Rohan Sukumaran · Quentin Bertrand · Gauthier Gidel -
2022 Workshop: Hardware-aware efficient training (HAET) »
Gonçalo Mordido · Yoshua Bengio · Ghouthi BOUKLI HACENE · Vincent Gripon · François Leduc-Primeau · Vahid Partovi Nia · Julie Grollier -
2022 : Is a Modular Architecture Enough? »
Sarthak Mittal · Yoshua Bengio · Guillaume Lajoie -
2022 Poster: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Poster: Multi-scale Feature Learning Dynamics: Insights for Double Descent »
Mohammad Pezeshki · Amartya Mitra · Yoshua Bengio · Guillaume Lajoie -
2022 Spotlight: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Spotlight: Multi-scale Feature Learning Dynamics: Insights for Double Descent »
Mohammad Pezeshki · Amartya Mitra · Yoshua Bengio · Guillaume Lajoie -
2022 Poster: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Spotlight: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Poster: Generative Flow Networks for Discrete Probabilistic Modeling »
Dinghuai Zhang · Nikolay Malkin · Zhen Liu · Alexandra Volokhova · Aaron Courville · Yoshua Bengio -
2022 Poster: Towards Scaling Difference Target Propagation by Learning Backprop Targets »
Maxence ERNOULT · Fabrice Normandin · Abhinav Moudgil · Sean Spinney · Eugene Belilovsky · Irina Rish · Blake Richards · Yoshua Bengio -
2022 Spotlight: Towards Scaling Difference Target Propagation by Learning Backprop Targets »
Maxence ERNOULT · Fabrice Normandin · Abhinav Moudgil · Sean Spinney · Eugene Belilovsky · Irina Rish · Blake Richards · Yoshua Bengio -
2022 Spotlight: Generative Flow Networks for Discrete Probabilistic Modeling »
Dinghuai Zhang · Nikolay Malkin · Zhen Liu · Alexandra Volokhova · Aaron Courville · Yoshua Bengio -
2021 Workshop: Tackling Climate Change with Machine Learning »
Hari Prasanna Das · Katarzyna Tokarska · Maria João Sousa · Meareg Hailemariam · David Rolnick · Xiaoxiang Zhu · Yoshua Bengio -
2021 Poster: Domain Generalization using Causal Matching »
Divyat Mahajan · Shruti Tople · Amit Sharma -
2021 Oral: Domain Generalization using Causal Matching »
Divyat Mahajan · Shruti Tople · Amit Sharma -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Poster: Structured Convolutional Kernel Networks for Airline Crew Scheduling »
Yassine Yaakoubi · Francois Soumis · Simon Lacoste-Julien -
2021 Poster: Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets »
Thomas Kerdreux · Lewis Liu · Simon Lacoste-Julien · Damien Scieur -
2021 Spotlight: Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets »
Thomas Kerdreux · Lewis Liu · Simon Lacoste-Julien · Damien Scieur -
2021 Spotlight: Structured Convolutional Kernel Networks for Airline Crew Scheduling »
Yassine Yaakoubi · Francois Soumis · Simon Lacoste-Julien -
2020 : QA for invited talk 4 Bengio »
Yoshua Bengio -
2020 : Invited talk 4 Bengio »
Yoshua Bengio -
2020 : Keynote: Yoshua Bengio (Q&A) »
Yoshua Bengio -
2020 : Keynote: Yoshua Bengio »
Yoshua Bengio -
2020 Workshop: Object-Oriented Learning: Perception, Representation, and Reasoning »
Sungjin Ahn · Adam Kosiorek · Jessica Hamrick · Sjoerd van Steenkiste · Yoshua Bengio -
2020 Workshop: MLRetrospectives: A Venue for Self-Reflection in ML Research »
Jessica Forde · Jesse Dodge · Mayoore Jaiswal · Rosanne Liu · Ryan Lowe · Rosanne Liu · Joelle Pineau · Yoshua Bengio -
2020 Poster: Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules »
Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: Perceptual Generative Autoencoders »
Zijun Zhang · Ruixiang ZHANG · Zongpeng Li · Yoshua Bengio · Liam Paull -
2020 Poster: Stochastic Hamiltonian Gradient Methods for Smooth Games »
Nicolas Loizou · Hugo Berard · Alexia Jolicoeur-Martineau · Pascal Vincent · Simon Lacoste-Julien · Ioannis Mitliagkas -
2020 Poster: Linear Lower Bounds and Conditioning of Differentiable Games »
Adam Ibrahim · Waïss Azizian · Gauthier Gidel · Ioannis Mitliagkas -
2020 Poster: Revisiting Fundamentals of Experience Replay »
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney -
2020 Poster: Small-GAN: Speeding up GAN Training using Core-Sets »
Samrath Sinha · Han Zhang · Anirudh Goyal · Yoshua Bengio · Hugo Larochelle · Augustus Odena -
2019 : AI Commons »
Yoshua Bengio -
2019 : Opening remarks »
Yoshua Bengio -
2019 Workshop: AI For Social Good (AISG) »
Margaux Luck · Kris Sankaran · Tristan Sylvain · Sean McGregor · Jonnie Penn · Girmaw Abebe Tadesse · Virgile Sylvain · Myriam Côté · Lester Mackey · Rayid Ghani · Yoshua Bengio -
2019 : Panel Discussion »
Yoshua Bengio · Andrew Ng · Raia Hadsell · John Platt · Claire Monteleoni · Jennifer Chayes -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Personalized Visualization of the Impact of Climate Change »
Yoshua Bengio -
2019 : Networking Lunch (provided) + Poster Session »
Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki -
2019 Workshop: Climate Change: How Can AI Help? »
David Rolnick · Alexandre Lacoste · Tegan Maharaj · Jennifer Chayes · Yoshua Bengio -
2019 Poster: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: Multi-objective training of Generative Adversarial Networks with multiple discriminators »
Isabela Albuquerque · Joao Monteiro · Thang Doan · Breandan Considine · Tiago Falk · Ioannis Mitliagkas -
2019 Poster: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: Multi-objective training of Generative Adversarial Networks with multiple discriminators »
Isabela Albuquerque · Joao Monteiro · Thang Doan · Breandan Considine · Tiago Falk · Ioannis Mitliagkas -
2019 Oral: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: Manifold Mixup: Better Representations by Interpolating Hidden States »
Vikas Verma · Alex Lamb · Christopher Beckham · Amir Najafi · Ioannis Mitliagkas · David Lopez-Paz · Yoshua Bengio -
2019 Poster: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: Manifold Mixup: Better Representations by Interpolating Hidden States »
Vikas Verma · Alex Lamb · Christopher Beckham · Amir Najafi · Ioannis Mitliagkas · David Lopez-Paz · Yoshua Bengio -
2018 Poster: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Oral: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Poster: Learning Representations and Generative Models for 3D Point Clouds »
Panagiotis Achlioptas · Olga Diamanti · Ioannis Mitliagkas · Leonidas Guibas -
2018 Poster: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2018 Oral: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2018 Oral: Learning Representations and Generative Models for 3D Point Clouds »
Panagiotis Achlioptas · Olga Diamanti · Ioannis Mitliagkas · Leonidas Guibas -
2017 Workshop: Reproducibility in Machine Learning Research »
Rosemary Nan Ke · Anirudh Goyal · Alex Lamb · Joelle Pineau · Samy Bengio · Yoshua Bengio -
2017 Poster: Sharp Minima Can Generalize For Deep Nets »
Laurent Dinh · Razvan Pascanu · Samy Bengio · Yoshua Bengio -
2017 Poster: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: Sharp Minima Can Generalize For Deep Nets »
Laurent Dinh · Razvan Pascanu · Samy Bengio · Yoshua Bengio