Timezone: »
Poster
Run-off Election: Improved Provable Defense against Data Poisoning Attacks
Keivan Rezaei · Kiarash Banihashem · Atoosa Malemir Chegini · Soheil Feizi
In data poisoning attacks, an adversary tries to change a model's prediction by adding, modifying, or removing samples in the training data. Recently, *ensemble-based* approaches for obtaining *provable* defenses against data poisoning have been proposed where predictions are done by taking a majority vote across multiple base models. In this work, we show that merely considering the majority vote in ensemble defenses is wasteful as it does not effectively utilize available information in the logits layers of the base models. Instead, we propose *Run-Off Election (ROE)*, a novel aggregation method based on a two-round election across the base models: In the first round, models vote for their preferred class and then a second, *Run-Off* election is held between the top two classes in the first round. Based on this approach, we propose DPA+ROE and FA+ROE defense methods based on Deep Partition Aggregation (DPA) and Finite Aggregation (FA) approaches from prior work. We evaluate our methods on MNIST, CIFAR-10, and GTSRB and obtain improvements in certified accuracy by up to $3\%$-$4\%$. Also, by applying ROE on a boosted version of DPA, we gain improvements around $12\%$-$27\%$ comparing to the current state-of-the-art, establishing **a new state-of-the-art** in (pointwise) certified robustness against data poisoning. In many cases, our approach outperforms the state-of-the-art, even when using 32 times less computational power.
Author Information
Keivan Rezaei (University of Maryland)
Kiarash Banihashem (University of Maryland, College Park)
Atoosa Malemir Chegini (University of Maryland, College Park)
Soheil Feizi (University of Maryland)
More from the Same Authors
-
2022 : Towards Better Understanding of Self-Supervised Representations »
Neha Mukund Kalibhat · Kanika Narang · Hamed Firooz · Maziar Sanjabi · Soheil Feizi -
2022 : Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 : Certifiably Robust Multi-Agent Reinforcement Learning against Adversarial Communication »
Yanchao Sun · Ruijie Zheng · Parisa Hassanzadeh · Yongyuan Liang · Soheil Feizi · Sumitra Ganesh · Furong Huang -
2023 Poster: Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time »
Kiarash Banihashem · Leyla Biabani · Samira Goudarzi · MohammadTaghi Hajiaghayi · Peyman Jabbarzade · Morteza Monemizadeh -
2023 Poster: Identifying Interpretable Subspaces in Image Representations »
Neha Mukund Kalibhat · Shweta Bhardwaj · C. Bayan Bruss · Hamed Firooz · Maziar Sanjabi · Soheil Feizi -
2023 Poster: Text-To-Concept (and Back) via Cross-Model Alignment »
Mazda Moayeri · Keivan Rezaei · Maziar Sanjabi · Soheil Feizi -
2022 : Panel discussion »
Steffen Schneider · Aleksander Madry · Alexei Efros · Chelsea Finn · Soheil Feizi -
2022 : Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 : Toward Efficient Robust Training against Union of Lp Threat Models »
Gaurang Sriramanan · Maharshi Gor · Soheil Feizi -
2022 Poster: Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 Poster: FOCUS: Familiar Objects in Common and Uncommon Settings »
Priyatham Kattakinda · Soheil Feizi -
2022 Spotlight: Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 Spotlight: FOCUS: Familiar Objects in Common and Uncommon Settings »
Priyatham Kattakinda · Soheil Feizi -
2021 : Invited Talk 6: T​owards Understanding Foundations of Robust Learning »
Soheil Feizi -
2021 Poster: Improved, Deterministic Smoothing for L_1 Certified Robustness »
Alexander Levine · Soheil Feizi -
2021 Poster: Skew Orthogonal Convolutions »
Sahil Singla · Soheil Feizi -
2021 Spotlight: Skew Orthogonal Convolutions »
Sahil Singla · Soheil Feizi -
2021 Oral: Improved, Deterministic Smoothing for L_1 Certified Robustness »
Alexander Levine · Soheil Feizi -
2020 Poster: Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness »
Aounon Kumar · Alexander Levine · Tom Goldstein · Soheil Feizi -
2020 Poster: Second-Order Provable Defenses against Adversarial Attacks »
Sahil Singla · Soheil Feizi -
2020 Poster: On Second-Order Group Influence Functions for Black-Box Predictions »
Samyadeep Basu · Xuchen You · Soheil Feizi -
2019 Poster: Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation »
Sahil Singla · Eric Wallace · Shi Feng · Soheil Feizi -
2019 Oral: Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation »
Sahil Singla · Eric Wallace · Shi Feng · Soheil Feizi -
2019 Poster: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi -
2019 Oral: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi